Exploring Fractional Quantum Mechanics: Stability Analysis and Wave Propagation in Coupled Schrödinger Equations

Q4 Mathematics
Iftekher S. Chowdhury, Dr. Eric Howard, Dr Nand Kumar
{"title":"Exploring Fractional Quantum Mechanics: Stability Analysis and Wave Propagation in Coupled Schrödinger Equations","authors":"Iftekher S. Chowdhury, Dr. Eric Howard, Dr Nand Kumar","doi":"10.52783/cana.v31.935","DOIUrl":null,"url":null,"abstract":"Fractional Quantum Mechanics (FQM) has emerged as a fascinating theoretical framework extending traditional quantum mechanics to describe physical systems with non-local or long-range interactions. In this paper, we delve into the realm of FQM, focusing on stability analysis and wave propagation in coupled Schrödinger equations. We begin with a comprehensive overview of FQM, elucidating its fundamental principles and mathematical formalism. Subsequently, we conduct stability analysis of coupled fractional Schrödinger equations, exploring the conditions under which these systems exhibit stable behavior. Furthermore, we investigate wave propagation phenomena within such systems, shedding light on the unique characteristics of fractional quantum waves. Our findings not only contribute to advancing the theoretical understanding of FQM but also offer insights into potential applications in diverse fields ranging from condensed matter physics to quantum information processing.","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Fractional Quantum Mechanics (FQM) has emerged as a fascinating theoretical framework extending traditional quantum mechanics to describe physical systems with non-local or long-range interactions. In this paper, we delve into the realm of FQM, focusing on stability analysis and wave propagation in coupled Schrödinger equations. We begin with a comprehensive overview of FQM, elucidating its fundamental principles and mathematical formalism. Subsequently, we conduct stability analysis of coupled fractional Schrödinger equations, exploring the conditions under which these systems exhibit stable behavior. Furthermore, we investigate wave propagation phenomena within such systems, shedding light on the unique characteristics of fractional quantum waves. Our findings not only contribute to advancing the theoretical understanding of FQM but also offer insights into potential applications in diverse fields ranging from condensed matter physics to quantum information processing.
探索分数量子力学:耦合薛定谔方程中的稳定性分析和波传播
分数量子力学(Fractional Quantum Mechanics,简称 FQM)作为一种迷人的理论框架已经出现,它扩展了传统量子力学,用于描述具有非局部或长程相互作用的物理系统。在本文中,我们将深入探讨 FQM 领域,重点是耦合薛定谔方程中的稳定性分析和波传播。我们首先全面概述了 FQM,阐明了其基本原理和数学形式。随后,我们对耦合分数薛定谔方程进行稳定性分析,探索这些系统表现出稳定行为的条件。此外,我们还研究了此类系统中的波传播现象,揭示了分数量子波的独特特征。我们的研究成果不仅有助于推进对分数量子力学的理论理解,还为从凝聚态物理到量子信息处理等不同领域的潜在应用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信