Clipping Noise in Visible Light Communication Systems with OFDM and PAPR Reduction

IF 2.1 4区 物理与天体物理 Q2 OPTICS
Hussien Alrakah, Mohamad Hijazi, S. Sinanović, W. Popoola
{"title":"Clipping Noise in Visible Light Communication Systems with OFDM and PAPR Reduction","authors":"Hussien Alrakah, Mohamad Hijazi, S. Sinanović, W. Popoola","doi":"10.3390/photonics11070643","DOIUrl":null,"url":null,"abstract":"This paper presents an analytical study of signal clipping that leads to the noise/distortion in the waveform of DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM)-based visible light communication (VLC) systems. The pilot-assisted (PA) technique is used to reduce the high peak-to-average power ratio (PAPR) of the time-domain waveform of the DCO-OFDM system. The bit error rate (BER) performance of the PA DCO-OFDM system is investigated analytically at three different clipping levels as well as without any clipping. The analytical BER performance is verified through simulation and then compared to that of the conventional DCO-OFDM without PAPR reduction at the selected clipping levels. The PA DCO-OFDM system shows improved BER performance at all three clipping levels.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11070643","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an analytical study of signal clipping that leads to the noise/distortion in the waveform of DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM)-based visible light communication (VLC) systems. The pilot-assisted (PA) technique is used to reduce the high peak-to-average power ratio (PAPR) of the time-domain waveform of the DCO-OFDM system. The bit error rate (BER) performance of the PA DCO-OFDM system is investigated analytically at three different clipping levels as well as without any clipping. The analytical BER performance is verified through simulation and then compared to that of the conventional DCO-OFDM without PAPR reduction at the selected clipping levels. The PA DCO-OFDM system shows improved BER performance at all three clipping levels.
利用 OFDM 和 PAPR 降低可见光通信系统中的削波噪声
本文对导致基于直流偏置光正交频分复用(DCO-OFDM)的可见光通信(VLC)系统波形出现噪声/失真的信号削波进行了分析研究。先导辅助(PA)技术用于降低 DCO-OFDM 系统时域波形中较高的峰均功率比(PAPR)。通过分析研究了 PA DCO-OFDM 系统在三种不同削波电平和无削波电平下的误码率 (BER) 性能。分析得出的误码率性能通过仿真进行了验证,然后与选定削波电平下未降低 PAPR 的传统 DCO-OFDM 性能进行了比较。PA DCO-OFDM 系统在所有三个削波电平下的误码率性能都有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信