Sina Shaffiee Haghshenas, G. Guido, Sami Shaffiee Haghshenas, V. Astarita
{"title":"Predicting Number of Vehicles Involved in Rural Crashes Using Learning Vector Quantization Algorithm","authors":"Sina Shaffiee Haghshenas, G. Guido, Sami Shaffiee Haghshenas, V. Astarita","doi":"10.3390/ai5030054","DOIUrl":null,"url":null,"abstract":"Roads represent very important infrastructure and play a significant role in economic, cultural, and social growth. Therefore, there is a critical need for many researchers to model crash injury severity in order to study how safe roads are. When measuring the cost of crashes, the severity of the crash is a critical criterion, and it is classified into various categories. The number of vehicles involved in the crash (NVIC) is a crucial factor in all of these categories. For this purpose, this research examines road safety and provides a prediction model for the number of vehicles involved in a crash. Specifically, learning vector quantization (LVQ 2.1), one of the sub-branches of artificial neural networks (ANNs), is used to build a classification model. The novelty of this study demonstrates LVQ 2.1’s efficacy in categorizing accident data and its ability to improve road safety strategies. The LVQ 2.1 algorithm is particularly suitable for classification tasks and works by adjusting prototype vectors to improve the classification performance. The research emphasizes how urgently better prediction algorithms are needed to handle issues related to road safety. In this study, a dataset of 564 crash records from rural roads in Calabria between 2017 and 2048, a region in southern Italy, was utilized. The study analyzed several key parameters, including daylight, the crash type, day of the week, location, speed limit, average speed, and annual average daily traffic, as input variables to predict the number of vehicles involved in rural crashes. The findings revealed that the “crash type” parameter had the most significant impact, whereas “location” had the least significant impact on the occurrence of rural crashes in the investigated areas.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ai5030054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Roads represent very important infrastructure and play a significant role in economic, cultural, and social growth. Therefore, there is a critical need for many researchers to model crash injury severity in order to study how safe roads are. When measuring the cost of crashes, the severity of the crash is a critical criterion, and it is classified into various categories. The number of vehicles involved in the crash (NVIC) is a crucial factor in all of these categories. For this purpose, this research examines road safety and provides a prediction model for the number of vehicles involved in a crash. Specifically, learning vector quantization (LVQ 2.1), one of the sub-branches of artificial neural networks (ANNs), is used to build a classification model. The novelty of this study demonstrates LVQ 2.1’s efficacy in categorizing accident data and its ability to improve road safety strategies. The LVQ 2.1 algorithm is particularly suitable for classification tasks and works by adjusting prototype vectors to improve the classification performance. The research emphasizes how urgently better prediction algorithms are needed to handle issues related to road safety. In this study, a dataset of 564 crash records from rural roads in Calabria between 2017 and 2048, a region in southern Italy, was utilized. The study analyzed several key parameters, including daylight, the crash type, day of the week, location, speed limit, average speed, and annual average daily traffic, as input variables to predict the number of vehicles involved in rural crashes. The findings revealed that the “crash type” parameter had the most significant impact, whereas “location” had the least significant impact on the occurrence of rural crashes in the investigated areas.