Optimized Ensemble Learning Approach with Explainable AI for Improved Heart Disease Prediction

Information Pub Date : 2024-07-08 DOI:10.3390/info15070394
Ibomoiye Domor Mienye, N. Jere
{"title":"Optimized Ensemble Learning Approach with Explainable AI for Improved Heart Disease Prediction","authors":"Ibomoiye Domor Mienye, N. Jere","doi":"10.3390/info15070394","DOIUrl":null,"url":null,"abstract":"Recent advances in machine learning (ML) have shown great promise in detecting heart disease. However, to ensure the clinical adoption of ML models, they must not only be generalizable and robust but also transparent and explainable. Therefore, this research introduces an approach that integrates the robustness of ensemble learning algorithms with the precision of Bayesian optimization for hyperparameter tuning and the interpretability offered by Shapley additive explanations (SHAP). The ensemble classifiers considered include adaptive boosting (AdaBoost), random forest, and extreme gradient boosting (XGBoost). The experimental results on the Cleveland and Framingham datasets demonstrate that the optimized XGBoost model achieved the highest performance, with specificity and sensitivity values of 0.971 and 0.989 on the Cleveland dataset and 0.921 and 0.975 on the Framingham dataset, respectively.","PeriodicalId":510156,"journal":{"name":"Information","volume":" 390","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info15070394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in machine learning (ML) have shown great promise in detecting heart disease. However, to ensure the clinical adoption of ML models, they must not only be generalizable and robust but also transparent and explainable. Therefore, this research introduces an approach that integrates the robustness of ensemble learning algorithms with the precision of Bayesian optimization for hyperparameter tuning and the interpretability offered by Shapley additive explanations (SHAP). The ensemble classifiers considered include adaptive boosting (AdaBoost), random forest, and extreme gradient boosting (XGBoost). The experimental results on the Cleveland and Framingham datasets demonstrate that the optimized XGBoost model achieved the highest performance, with specificity and sensitivity values of 0.971 and 0.989 on the Cleveland dataset and 0.921 and 0.975 on the Framingham dataset, respectively.
利用可解释的人工智能优化集合学习法改进心脏病预测
机器学习(ML)的最新进展表明,在检测心脏病方面大有可为。然而,为了确保 ML 模型在临床上的应用,这些模型不仅必须具有通用性和鲁棒性,还必须具有透明性和可解释性。因此,本研究引入了一种方法,将集合学习算法的稳健性与贝叶斯优化超参数调整的精确性以及夏普利加法解释(SHAP)提供的可解释性结合起来。所考虑的集合分类器包括自适应提升(AdaBoost)、随机森林和极端梯度提升(XGBoost)。克利夫兰和弗雷明汉数据集的实验结果表明,优化后的 XGBoost 模型性能最高,在克利夫兰数据集上的特异性和灵敏度值分别为 0.971 和 0.989,在弗雷明汉数据集上的特异性和灵敏度值分别为 0.921 和 0.975。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信