Object-oriented classification of remote sensing earth images using machine

L. V. Garafutdinova, V. Kalichkin, D. S. Fedorov
{"title":"Object-oriented classification of remote sensing earth images using machine","authors":"L. V. Garafutdinova, V. Kalichkin, D. S. Fedorov","doi":"10.31677/2072-6724-2024-71-2-37-47","DOIUrl":null,"url":null,"abstract":"The results of research on the development of automated classification of remote sensing images of the Earth for on-farm land use based on the use of an object-oriented approach, machine learning and geoinformation modeling are presented. The classification methodology included three stages: analysis of digital images with the selection of spatial objects through preliminary segmentation, classification of spatial objects using the ,Random Forest (RF) and Support Vector Machine (SVM) machine learning algorithms, and assessment of the overall accuracy of the result. For processing, satellite images Sentinel-2 from May to April for the land use area of the experimental station «Elitnaya» and Individual Enterprise of State Farm (Collective Farm) Kovalev S.M. of the Novosibirsk region with a spatial resolution of 10 m per pixel were used. The processing of the resulting multispectral images was carried out using the software product SAGA GIS version 8.5.1 and QGIS with opensource code, the creation of classification models was carried out in the package of the statistical programming language R. It was established that the overall accuracy of classification of land use objects displayed onsatellite images, for the territory of the experimental station «Elitnaya» the SVM algorithm was 87.1% (kappa coefficient 0.74), and using the RF algorithm – 90.3% (kappa coefficient 0.87). For the land use area of the Individual Enterprise of State Farm (Collective Farm) Kovalev S.M. using the SVM algorithm – 78.4% (kappa coefficient 0.78), and using the RF algorithm – 82.3% (kappa coefficient 0.82). The object-oriented approach, in integration with machine learning, facilitates efficient segmentation and classification of remote sensing images for the delineation of spatial objects, provides the ability to automate the mapping process of land use areas, and to incorporate this information into geoinformation modeling for evaluation and classification of agricultural lands.","PeriodicalId":124451,"journal":{"name":"Bulletin of NSAU (Novosibirsk State Agrarian University)","volume":" 452","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of NSAU (Novosibirsk State Agrarian University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31677/2072-6724-2024-71-2-37-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The results of research on the development of automated classification of remote sensing images of the Earth for on-farm land use based on the use of an object-oriented approach, machine learning and geoinformation modeling are presented. The classification methodology included three stages: analysis of digital images with the selection of spatial objects through preliminary segmentation, classification of spatial objects using the ,Random Forest (RF) and Support Vector Machine (SVM) machine learning algorithms, and assessment of the overall accuracy of the result. For processing, satellite images Sentinel-2 from May to April for the land use area of the experimental station «Elitnaya» and Individual Enterprise of State Farm (Collective Farm) Kovalev S.M. of the Novosibirsk region with a spatial resolution of 10 m per pixel were used. The processing of the resulting multispectral images was carried out using the software product SAGA GIS version 8.5.1 and QGIS with opensource code, the creation of classification models was carried out in the package of the statistical programming language R. It was established that the overall accuracy of classification of land use objects displayed onsatellite images, for the territory of the experimental station «Elitnaya» the SVM algorithm was 87.1% (kappa coefficient 0.74), and using the RF algorithm – 90.3% (kappa coefficient 0.87). For the land use area of the Individual Enterprise of State Farm (Collective Farm) Kovalev S.M. using the SVM algorithm – 78.4% (kappa coefficient 0.78), and using the RF algorithm – 82.3% (kappa coefficient 0.82). The object-oriented approach, in integration with machine learning, facilitates efficient segmentation and classification of remote sensing images for the delineation of spatial objects, provides the ability to automate the mapping process of land use areas, and to incorporate this information into geoinformation modeling for evaluation and classification of agricultural lands.
利用机器对遥感地球图像进行面向对象的分类
本文介绍了在使用面向对象的方法、机器学习和地理信息建模的基础上,为农场土地利用开发地球遥感图像自动分类的研究成果。分类方法包括三个阶段:分析数字图像,通过初步分割选择空间对象;使用随机森林(RF)和支持向量机(SVM)机器学习算法对空间对象进行分类;评估结果的总体准确性。在处理过程中,使用了新西伯利亚地区 "Elitnaya "实验站和国营农场(集体农庄)科瓦列夫股份公司个人企业的 5 月至 4 月卫星图像 Sentinel-2,空间分辨率为每像素 10 米。使用软件产品 SAGA GIS 8.5.1 版和 QGIS 开源代码对生成的多光谱图像进行了处理,并使用统计编程语言 R 软件包创建了分类模型。结果表明,对于 "叶利特纳亚 "实验站的领土,SVM 算法对卫星图像上显示的土地利用对象进行分类的总体准确率为 87.1%(卡帕系数 0.74),而使用 RF 算法的准确率为 90.3%(卡帕系数 0.87)。对于国营农场(集体农庄)个体企业科瓦廖夫-S.M.的土地使用面积,使用 SVM 算法的结果为 78.4%(卡帕系数 0.78),使用 RF 算法的结果为 82.3%(卡帕系数 0.82)。以对象为导向的方法与机器学习相结合,有助于对遥感图像进行高效的分割和分类,以划定空间对象,提供土地利用区域制图过程自动化的能力,并将这些信息纳入地理信息建模,以对农业用地进行评估和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信