Global and blow-up results for a quasilinear parabolic equation with variable sources and memory terms

Q2 Mathematics
Touil Nadji, Abita Rahmoune
{"title":"Global and blow-up results for a quasilinear parabolic equation with variable sources and memory terms","authors":"Touil Nadji,&nbsp;Abita Rahmoune","doi":"10.1007/s11565-024-00538-0","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents a general model of quasi-linear parabolic equations with variable exponents for the source and dissipative term types </p><div><div><span>$$\\begin{aligned} \\textrm{L}\\left( t\\right) \\left| u_{t}\\right| ^{m\\left( x\\right) -2}u_{t}-\\Delta u+\\int _{0}^{t}g(t-s)\\Delta u(x,s)\\textrm{d}s=\\left| u\\right| ^{p\\left( x\\right) -2}u. \\end{aligned}$$</span></div></div><p>When <span>\\(p(x)\\ge m(x)\\ge 2\\)</span>, the matrix <span>\\(\\textrm{L}(t)\\)</span> is both positive definite and bounded, while the function <i>g</i> is continuously differentiable and decays over time. The paper shows that the blow-up result occurs at two different finite times and provides an upper bound for the blow-up time. Finally, it establishes that the energy function decays globally for solutions, with both positive and negative initial energy.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 4","pages":"1697 - 1729"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00538-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a general model of quasi-linear parabolic equations with variable exponents for the source and dissipative term types

$$\begin{aligned} \textrm{L}\left( t\right) \left| u_{t}\right| ^{m\left( x\right) -2}u_{t}-\Delta u+\int _{0}^{t}g(t-s)\Delta u(x,s)\textrm{d}s=\left| u\right| ^{p\left( x\right) -2}u. \end{aligned}$$

When \(p(x)\ge m(x)\ge 2\), the matrix \(\textrm{L}(t)\) is both positive definite and bounded, while the function g is continuously differentiable and decays over time. The paper shows that the blow-up result occurs at two different finite times and provides an upper bound for the blow-up time. Finally, it establishes that the energy function decays globally for solutions, with both positive and negative initial energy.

具有可变源和记忆项的准线性抛物方程的全局和炸毁结果
本文提出了一个准线性抛物方程的一般模型,该模型的源项和耗散项类型为可变指数 $$\begin{aligned}\textrm{L}\left( t\right) \left| u_{t}\right| ^{m\left( x\right) -2}u_{t}-\Delta u+\int _{0}^{t}g(t-s)\Delta u(x,s)\textrm{d}s=\left| u\right| ^{p\left( x\right) -2}u.\end{aligned}$$当 \(p(x)\ge m(x)\ge 2\) 时,矩阵 \(\textrm{L}(t)\) 既是正定的又是有界的,而函数 g 是连续可微的并随时间衰减。本文表明炸毁结果发生在两个不同的有限时间,并给出了炸毁时间的上限。最后,论文还确定了能量函数在解的全局衰减,初始能量既有正值也有负值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信