Topological Transitions in a Kerr Nonlinear Oscillator

Juan Lin, Shou-Bang Yang, Fan Wu, Zhen-Biao Yang
{"title":"Topological Transitions in a Kerr Nonlinear Oscillator","authors":"Juan Lin, Shou-Bang Yang, Fan Wu, Zhen-Biao Yang","doi":"10.34133/icomputing.0099","DOIUrl":null,"url":null,"abstract":"A Kerr nonlinear oscillator (KNO) supports a pair of steady eigenstates, coherent states with opposite phases, that are good for the encoding of continuous variable qubit basis states. Arbitrary control of the KNO confined within the steady state subspace allows extraction of the Berry curvature through the linear response of the physical observable to the quench velocity of the system, providing an effective method for the characterization of topology in the KNO. As an alternative, the control adopting the\"shortcut to adiabaticity\"to the KNO enables the exploration of the topology through accelerated adiabatic eigenstate evolution to measure all three physical observables. Topological transitions are revealed by the jump of the first Chern number, obtained respectively from the integral of the Berry curvature and of the new polar angle relation, over the whole parameter space. Our strategy paves the way for measuring topological transitions in continuous variable systems.","PeriodicalId":502319,"journal":{"name":"Intelligent Computing","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/icomputing.0099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Kerr nonlinear oscillator (KNO) supports a pair of steady eigenstates, coherent states with opposite phases, that are good for the encoding of continuous variable qubit basis states. Arbitrary control of the KNO confined within the steady state subspace allows extraction of the Berry curvature through the linear response of the physical observable to the quench velocity of the system, providing an effective method for the characterization of topology in the KNO. As an alternative, the control adopting the"shortcut to adiabaticity"to the KNO enables the exploration of the topology through accelerated adiabatic eigenstate evolution to measure all three physical observables. Topological transitions are revealed by the jump of the first Chern number, obtained respectively from the integral of the Berry curvature and of the new polar angle relation, over the whole parameter space. Our strategy paves the way for measuring topological transitions in continuous variable systems.
克尔非线性振荡器中的拓扑转变
克尔非线性振荡器(KNO)支持一对稳定的特征态,即相位相反的相干态,非常适合编码连续可变的量子比特基态。在稳态子空间内对 KNO 进行任意控制,可以通过物理观测指标对系统淬火速度的线性响应来提取贝里曲率,从而为 KNO 拓扑的表征提供了一种有效方法。另一种方法是对 KNO 采用 "绝热捷径 "控制,通过加速绝热特征态演化来探索拓扑结构,从而测量所有三个物理观测指标。在整个参数空间内,通过分别从贝里曲率积分和新极角关系积分获得的第一个切尔数的跃迁,拓扑转变就会显现出来。我们的策略为测量连续变量系统中的拓扑转变铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信