Real-time confinement regime detection in fusion plasmas with convolutional neural networks and high-bandwidth edge fluctuation measurements

Kevin Singh Gill, David R Smith, Semin Joung, B. Geiger, G. McKee, Jefferey Zimmerman, Ryan N Coffee, A. Jalalvand, E. Kolemen
{"title":"Real-time confinement regime detection in fusion plasmas with convolutional neural networks and high-bandwidth edge fluctuation measurements","authors":"Kevin Singh Gill, David R Smith, Semin Joung, B. Geiger, G. McKee, Jefferey Zimmerman, Ryan N Coffee, A. Jalalvand, E. Kolemen","doi":"10.1088/2632-2153/ad605e","DOIUrl":null,"url":null,"abstract":"\n A real-time detection of the plasma confinement regime can enable new advanced plasma control capabilities for both the access to and sustainment of enhanced confinement regimes in fusion devices. For example, a real-time indication of the confinement regime can facilitate transition to the high-performing wide pedestal quiescent H-mode, or avoid unwanted transitions to lower confinement regimes that may induce plasma termination. To demonstrate real-time confinement regime detection, we use the 2D beam emission spectroscopy (BES) diagnostic system to capture localized density fluctuations of long wavelength turbulent modes in the edge region at a 1 MHz sampling rate. BES data from 330 discharges in either L-mode, H-mode, Quiescent H (QH)-mode, or wide-pedestal QH-mode was collected from the DIII-D tokamak and curated to develop a high-quality database to train a deep-learning classification model for real-time confinement detection. We utilize the 6x8 spatial configuration with a time window of 1024 $\\mu$s and recast the input to obtain spectral-like features via FFT preprocessing. We employ a shallow 3D convolutional neural network for the multivariate time-series classification task and utilize a softmax in the final dense layer to retrieve a probability distribution over the different confinement regimes. Our model classifies the global confinement state on 44 unseen test discharges with an average $F_1$ score of 0.94, using only $\\sim$1 millisecond snippets of BES data at a time. This activity demonstrates the feasibility for real-time data analysis of fluctuation diagnostics in future devices such as ITER, where the need for reliable and advanced plasma control is urgent.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"119 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad605e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A real-time detection of the plasma confinement regime can enable new advanced plasma control capabilities for both the access to and sustainment of enhanced confinement regimes in fusion devices. For example, a real-time indication of the confinement regime can facilitate transition to the high-performing wide pedestal quiescent H-mode, or avoid unwanted transitions to lower confinement regimes that may induce plasma termination. To demonstrate real-time confinement regime detection, we use the 2D beam emission spectroscopy (BES) diagnostic system to capture localized density fluctuations of long wavelength turbulent modes in the edge region at a 1 MHz sampling rate. BES data from 330 discharges in either L-mode, H-mode, Quiescent H (QH)-mode, or wide-pedestal QH-mode was collected from the DIII-D tokamak and curated to develop a high-quality database to train a deep-learning classification model for real-time confinement detection. We utilize the 6x8 spatial configuration with a time window of 1024 $\mu$s and recast the input to obtain spectral-like features via FFT preprocessing. We employ a shallow 3D convolutional neural network for the multivariate time-series classification task and utilize a softmax in the final dense layer to retrieve a probability distribution over the different confinement regimes. Our model classifies the global confinement state on 44 unseen test discharges with an average $F_1$ score of 0.94, using only $\sim$1 millisecond snippets of BES data at a time. This activity demonstrates the feasibility for real-time data analysis of fluctuation diagnostics in future devices such as ITER, where the need for reliable and advanced plasma control is urgent.
利用卷积神经网络和高带宽边缘波动测量实时探测聚变等离子体中的约束机制
对等离子体约束机制的实时检测可实现新的先进等离子体控制能力,以便在聚变装置中进入并维持增强型约束机制。例如,禁锢状态的实时指示可以促进向高性能宽基座静态 H 模式的过渡,或避免向可能导致等离子体终止的低禁锢状态的不必要过渡。为了演示实时约束机制检测,我们使用二维束发射光谱(BES)诊断系统,以 1 MHz 的采样率捕捉边缘区域长波长湍流模式的局部密度波动。我们从DIII-D托卡马克收集了330个L模式、H模式、静息H(QH)模式或宽顶QH模式放电的BES数据,并对这些数据进行了整理,以开发一个高质量的数据库,用于训练实时禁闭探测的深度学习分类模型。我们利用 6x8 的空间配置和 1024 $\mu$s 的时间窗口,并通过 FFT 预处理重铸输入以获得类似光谱的特征。我们采用浅层三维卷积神经网络来完成多变量时间序列分类任务,并在最后的稠密层中使用软最大值(softmax)来检索不同禁闭状态的概率分布。我们的模型对 44 个未见过的测试放电进行了全局禁闭状态分类,平均 F_1$ 得分为 0.94,每次仅使用 $\sim$1 毫秒的 BES 数据片段。这项活动证明了在未来装置(如国际热核聚变实验堆)中对波动诊断进行实时数据分析的可行性,在这种装置中迫切需要可靠和先进的等离子体控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信