Automorphism groups of some non-nilpotent Leibniz algebras

Q4 Mathematics
L. A. Kurdachenko, P. Minaiev, O. Pypka
{"title":"Automorphism groups of some non-nilpotent Leibniz algebras","authors":"L. A. Kurdachenko, P. Minaiev, O. Pypka","doi":"10.15421/242409","DOIUrl":null,"url":null,"abstract":"Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[a,[b,c]]=[[a,b],c]+[b,[a,c]]$ for all $a,b,c\\in L$. A linear transformation $f$ of $L$ is called an endomorphism of $L$, if $f([a,b])=[f(a),f(b)]$ for all elements $a,b\\in L$. A bijective endomorphism of $L$ is called an automorphism of $L$. It is easy to show that the set of all automorphisms of Leibniz algebra is a group with respect to the operation of multiplication of automorphisms. The description of the structure of the automorphism groups of Leibniz algebras is one of the natural and important problems of the general Leibniz algebra theory. The main goal of this article is to describe the structure of the automorphism group of a certain type of non-nilpotent three-dimensional Leibniz algebras.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"104 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[a,[b,c]]=[[a,b],c]+[b,[a,c]]$ for all $a,b,c\in L$. A linear transformation $f$ of $L$ is called an endomorphism of $L$, if $f([a,b])=[f(a),f(b)]$ for all elements $a,b\in L$. A bijective endomorphism of $L$ is called an automorphism of $L$. It is easy to show that the set of all automorphisms of Leibniz algebra is a group with respect to the operation of multiplication of automorphisms. The description of the structure of the automorphism groups of Leibniz algebras is one of the natural and important problems of the general Leibniz algebra theory. The main goal of this article is to describe the structure of the automorphism group of a certain type of non-nilpotent three-dimensional Leibniz algebras.
一些非零能莱布尼兹代数的自形群
让 $L$ 是一个域 $F$ 上的代数,具有二进制运算 $+$ 和 $[,]$。对于 L$ 中的所有 $a,b,c,,如果 $L$ 满足左莱布尼兹同一性:$[a,[b,c]]=[[a,b],c]+[b,[a,c]]$,则称 $L$ 为左莱布尼兹代数。如果$f([a,b])=[f(a),f(b)]$ 适用于L$中的所有元素$a,b,那么$L$的线性变换$f$称为$L$的内同构。$L$的双射内定态称为$L$的自定态。很容易证明,莱布尼兹代数的所有自变量集合是一个关于自变量乘法运算的群。描述莱布尼兹代数的自变群结构是一般莱布尼兹代数理论的自然和重要问题之一。本文的主要目标是描述某类非无势三维莱布尼兹代数的自变群结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信