On the analytic extension of three ratios of Horn's confluent hypergeometric function $\mathrm{H}_7$

Q4 Mathematics
V. Hladun, R. Rusyn, M. Dmytryshyn
{"title":"On the analytic extension of three ratios of Horn's confluent hypergeometric function $\\mathrm{H}_7$","authors":"V. Hladun, R. Rusyn, M. Dmytryshyn","doi":"10.15421/242405","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the extension of the analytic functions of two variables by special families of functions — continued fractions. In particular, we establish new symmetric domains of the analytical continuation of three ratios of Horn's confluent hypergeometric function $\\mathrm{H}_7$ with certain conditions on real and complex parameters using their continued fraction representations. We use Worpitzky's theorem, the multiple parabola theorem, and a technique that extends the convergence, already known for a small domain, to a larger domain to obtain domains of convergence of continued fractions, and the PC method to prove that they are also domains of analytical continuation.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"110 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the extension of the analytic functions of two variables by special families of functions — continued fractions. In particular, we establish new symmetric domains of the analytical continuation of three ratios of Horn's confluent hypergeometric function $\mathrm{H}_7$ with certain conditions on real and complex parameters using their continued fraction representations. We use Worpitzky's theorem, the multiple parabola theorem, and a technique that extends the convergence, already known for a small domain, to a larger domain to obtain domains of convergence of continued fractions, and the PC method to prove that they are also domains of analytical continuation.
论霍恩汇合超几何函数 $\mathrm{H}_7$ 的三个比率的解析扩展
在本文中,我们考虑通过特殊函数族--续分--来扩展两变量解析函数。特别是,我们利用其续分数表示法,建立了霍恩的汇交超几何函数 $\mathrm{H}_7$ 的三个比率的解析延续的新对称域,这些比率对实数和复数参数具有特定条件。我们利用沃皮茨基定理、多重抛物线定理和一种将已知的小域收敛扩展到更大域的技术,得到了连续分数的收敛域,并用 PC 方法证明它们也是解析延续域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信