Synchronous Distributed Key Generation without Broadcasts

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak
{"title":"Synchronous Distributed Key Generation without Broadcasts","authors":"Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak","doi":"10.62056/ayfhsgvtw","DOIUrl":null,"url":null,"abstract":"<jats:p> Distributed key generation (DKG) is a key building block in developing many efficient threshold cryptosystems. This work initiates the study of communication complexity and round complexity of DKG protocols over a point-to-point (bounded) synchronous network. Our key result is the first synchronous DKG protocol for discrete log-based cryptosystems with <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>κ</mml:mi>\n <mml:msup>\n <mml:mi>n</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:math> communication complexity (<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mrow>\n <mml:mi>κ</mml:mi>\n </mml:mrow>\n </mml:math> denotes a security parameter) that tolerates any <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mo><</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>/</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:math> Byzantine faults among <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:math> parties. We present two variants of the protocol: (i) a protocol with worst-case <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>κ</mml:mi>\n <mml:msup>\n <mml:mi>n</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:math> communication and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:math> rounds, and (ii) a protocol with expected <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>κ</mml:mi>\n <mml:msup>\n <mml:mi>n</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:math> communication and expected constant rounds. In the process of achieving our results, we design (1) a novel weak gradecast protocol with a communication complexity of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>κ</mml:mi>\n <mml:msup>\n <mml:mi>n</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:math> for linear-sized inputs and constant rounds, (2) a protocol called “recoverable-set-of-shares” for ensuring recovery of shared secrets, (3) an oblivious leader election protocol with <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>κ</mml:mi>\n <mml:msup>\n <mml:mi>n</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:math> communication and constant rounds, and (4) a multi-valued validated Byzantine agreement (MVBA) protocol with <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>κ</mml:mi>\n <mml:msup>\n <mml:mi>n</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:math> communication complexity for linear-sized inputs and expected constant rounds. Each of these primitives is of independent interest. </jats:p>","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"116 39","pages":"1635"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62056/ayfhsgvtw","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Distributed key generation (DKG) is a key building block in developing many efficient threshold cryptosystems. This work initiates the study of communication complexity and round complexity of DKG protocols over a point-to-point (bounded) synchronous network. Our key result is the first synchronous DKG protocol for discrete log-based cryptosystems with O ( κ n 3 ) communication complexity ( κ denotes a security parameter) that tolerates any t < n / 2 Byzantine faults among n parties. We present two variants of the protocol: (i) a protocol with worst-case O ( κ n 3 ) communication and O ( t ) rounds, and (ii) a protocol with expected O ( κ n 3 ) communication and expected constant rounds. In the process of achieving our results, we design (1) a novel weak gradecast protocol with a communication complexity of O ( κ n 2 ) for linear-sized inputs and constant rounds, (2) a protocol called “recoverable-set-of-shares” for ensuring recovery of shared secrets, (3) an oblivious leader election protocol with O ( κ n 3 ) communication and constant rounds, and (4) a multi-valued validated Byzantine agreement (MVBA) protocol with O ( κ n 3 ) communication complexity for linear-sized inputs and expected constant rounds. Each of these primitives is of independent interest.
无广播同步分布式密钥生成
分布式密钥生成(DKG)是开发许多高效阈值密码系统的关键构件。这项工作开始研究点对点(有界)同步网络上 DKG 协议的通信复杂度和回合复杂度。我们的主要成果是第一个基于离散日志密码系统的同步 DKG 协议,其通信复杂度为 O ( κ n 3 ) (κ 表示安全参数),可容忍 n 方之间的任何 t n / 2 拜占庭故障。我们提出了该协议的两个变体:(i) 最坏情况下通信复杂度为 O ( κ n 3 ) 、回合数为 O ( t ) 的协议;(ii) 预期通信复杂度为 O ( κ n 3 ) 、回合数为常数的协议。在实现这些结果的过程中,我们设计了:(1) 一种新颖的弱梯度传输协议,对于线性大小的输入和恒定轮次,其通信复杂度为 O ( κ n 2 ) ;(2) 一种名为 "可恢复共享集 "的协议,用于确保恢复共享秘密;(3) 一种遗忘领导者选举协议,其通信复杂度为 O ( κ n 3 ) ,轮次为恒定;(4) 一种多值验证拜占庭协议(MVBA)协议,对于线性大小的输入和预期恒定轮次,其通信复杂度为 O ( κ n 3 ) 。这些基元中的每一个都具有独立的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信