Symmetric operator extensions of composites of higher order difference operators

B. Okello, F. Nyamwala, D. Ambogo
{"title":"Symmetric operator extensions of composites of higher order difference operators","authors":"B. Okello, F. Nyamwala, D. Ambogo","doi":"10.56947/amcs.v24.352","DOIUrl":null,"url":null,"abstract":"In this paper we have considered two higher order difference operators generated by two higher order difference functions  on the Hilbert space of square summable functions. By allowing the leading coefficients to be unbounded and the other coefficients as constant functions, we have shown that the composites of two symmetric difference operators are symmetric if the leading coefficients are scalar multiple of each other and the common divisor of their orders is 1. Using examples, we have shown that these conditions of symmetry cannot be weakened. Furthermore, We have shown that the deficiency indices of the composites is equal to the sum of the deficiency indices of the individual operators and that the spectra of the self-adjoint operator extensions is the whole of the real line.","PeriodicalId":504658,"journal":{"name":"Annals of Mathematics and Computer Science","volume":"123 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56947/amcs.v24.352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we have considered two higher order difference operators generated by two higher order difference functions  on the Hilbert space of square summable functions. By allowing the leading coefficients to be unbounded and the other coefficients as constant functions, we have shown that the composites of two symmetric difference operators are symmetric if the leading coefficients are scalar multiple of each other and the common divisor of their orders is 1. Using examples, we have shown that these conditions of symmetry cannot be weakened. Furthermore, We have shown that the deficiency indices of the composites is equal to the sum of the deficiency indices of the individual operators and that the spectra of the self-adjoint operator extensions is the whole of the real line.
高阶差分算子复合体的对称算子扩展
在本文中,我们考虑了方可求和函数的希尔伯特空间上由两个高阶差分函数生成的两个高阶差分算子。通过允许前导系数无界和允许其他系数为常数函数,我们证明了如果前导系数互为标量倍数且它们的阶的公共除数为 1,则两个对称差分算子的复合算子是对称的。此外,我们还证明了复合算子的缺省指数等于单个算子的缺省指数之和,而且自相关算子扩展的谱是整个实线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信