Current Trends in Artificial Intelligence and Bovine Mastitis Research: A Bibliometric Review Approach

Animals Pub Date : 2024-07-09 DOI:10.3390/ani14142023
Thatiane Mendes Mitsunaga, Breno Luis Nery Nery Garcia, Ligia Beatriz Rizzanti Pereira, Yuri Campos Braga Costa, Roberto Fray da Silva, A. Delbem, Marcos Veiga dos Santos
{"title":"Current Trends in Artificial Intelligence and Bovine Mastitis Research: A Bibliometric Review Approach","authors":"Thatiane Mendes Mitsunaga, Breno Luis Nery Nery Garcia, Ligia Beatriz Rizzanti Pereira, Yuri Campos Braga Costa, Roberto Fray da Silva, A. Delbem, Marcos Veiga dos Santos","doi":"10.3390/ani14142023","DOIUrl":null,"url":null,"abstract":"Mastitis, an important disease in dairy cows, causes significant losses in herd profitability. Accurate diagnosis is crucial for adequate control. Studies using artificial intelligence (AI) models to classify, identify, predict, and diagnose mastitis show promise in improving mastitis control. This bibliometric review aimed to evaluate AI and bovine mastitis terms in the most relevant Scopus-indexed papers from 2011 to 2021. Sixty-two documents were analyzed, revealing key terms, prominent researchers, relevant publications, main themes, and keyword clusters. “Mastitis” and “machine learning” were the most cited terms, with an increasing trend from 2018 to 2021. Other terms, such as “sensors” and “mastitis detection”, also emerged. The United States was the most cited country and presented the largest collaboration network. Publications on mastitis and AI models notably increased from 2016 to 2021, indicating growing interest. However, few studies utilized AI for bovine mastitis detection, primarily employing artificial neural network models. This suggests a clear potential for further research in this area.","PeriodicalId":502248,"journal":{"name":"Animals","volume":"3 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ani14142023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mastitis, an important disease in dairy cows, causes significant losses in herd profitability. Accurate diagnosis is crucial for adequate control. Studies using artificial intelligence (AI) models to classify, identify, predict, and diagnose mastitis show promise in improving mastitis control. This bibliometric review aimed to evaluate AI and bovine mastitis terms in the most relevant Scopus-indexed papers from 2011 to 2021. Sixty-two documents were analyzed, revealing key terms, prominent researchers, relevant publications, main themes, and keyword clusters. “Mastitis” and “machine learning” were the most cited terms, with an increasing trend from 2018 to 2021. Other terms, such as “sensors” and “mastitis detection”, also emerged. The United States was the most cited country and presented the largest collaboration network. Publications on mastitis and AI models notably increased from 2016 to 2021, indicating growing interest. However, few studies utilized AI for bovine mastitis detection, primarily employing artificial neural network models. This suggests a clear potential for further research in this area.
人工智能与牛乳腺炎研究的当前趋势:文献计量学评论方法
乳腺炎是奶牛的一种重要疾病,会对牛群的盈利能力造成重大损失。准确诊断是充分控制的关键。利用人工智能(AI)模型对乳腺炎进行分类、识别、预测和诊断的研究表明,乳腺炎控制有望得到改善。本文献计量学综述旨在评估 2011 年至 2021 年 Scopus 索引论文中最相关的人工智能和牛乳腺炎术语。对 62 篇文献进行了分析,揭示了关键术语、著名研究人员、相关出版物、主要主题和关键词群。"乳腺炎 "和 "机器学习 "是被引用最多的术语,从2018年到2021年呈上升趋势。此外,还出现了 "传感器 "和 "乳腺炎检测 "等其他术语。美国是被引用最多的国家,也是最大的合作网络。从 2016 年到 2021 年,有关乳腺炎和人工智能模型的论文显著增加,表明人们的兴趣日益浓厚。然而,利用人工智能检测牛乳腺炎的研究很少,主要是采用人工神经网络模型。这表明该领域显然有进一步研究的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信