Geometrical Analysis of Spacelike and Timelike Rectifying Curves and their Applications

M. K. Saad
{"title":"Geometrical Analysis of Spacelike and Timelike Rectifying Curves and their Applications","authors":"M. K. Saad","doi":"10.2139/ssrn.4789269","DOIUrl":null,"url":null,"abstract":"In the light of great importance of curves and their frames in many different branches of science, especially differential geometry as well as geometric properties and their uses in various fields, we are interested here to study a special kind of curves called rectifying curves. We consider some characterizations of a non-lightlike curve has a spacelike or timelike rectifying plane in pseudo-Euclidean space E13. Then, we demonstrate that the proportion of curvatures of any spacelike or timelike rectifying curve is a non-constant linear function of the arc length parameter s. Finally, we defray a computational example to support our main findings.","PeriodicalId":21855,"journal":{"name":"SSRN Electronic Journal","volume":"33 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SSRN Electronic Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4789269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the light of great importance of curves and their frames in many different branches of science, especially differential geometry as well as geometric properties and their uses in various fields, we are interested here to study a special kind of curves called rectifying curves. We consider some characterizations of a non-lightlike curve has a spacelike or timelike rectifying plane in pseudo-Euclidean space E13. Then, we demonstrate that the proportion of curvatures of any spacelike or timelike rectifying curve is a non-constant linear function of the arc length parameter s. Finally, we defray a computational example to support our main findings.
时空整流曲线的几何分析及其应用
鉴于曲线及其框架在许多不同的科学分支,特别是微分几何以及几何特性及其在各个领域的应用中的重要性,我们有兴趣在此研究一种特殊的曲线,即整定曲线。我们考虑了在伪欧几里得空间 E13 中具有空间或时间整流平面的非光样曲线的一些特征。然后,我们证明了任何空间或时间整流曲线的曲率比例都是弧长参数 s 的非恒定线性函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信