Effects of Layer Thickness and Compaction Thickness on Green Part Density in Binder Jetting Additive Manufacturing of Silicon Carbide: Designed Experiments
Mostafa Meraj Pasha, Md Shakil Arman, Fahim Khan, Zhijian Pei, Stephen Kachur
{"title":"Effects of Layer Thickness and Compaction Thickness on Green Part Density in Binder Jetting Additive Manufacturing of Silicon Carbide: Designed Experiments","authors":"Mostafa Meraj Pasha, Md Shakil Arman, Fahim Khan, Zhijian Pei, Stephen Kachur","doi":"10.3390/jmmp8040148","DOIUrl":null,"url":null,"abstract":"This paper reports on an experimental investigation that used a full factorial design to study the main effects and the interaction effect of layer thickness and compaction thickness on the green part density in the binder jetting additive manufacturing of silicon carbide. A two-variable, two-level full factorial design was employed. The results show that the green part density was higher at the low level of layer thickness and at the high level of compaction thickness. These results can be useful in selecting the values of printing variables, enabling the fabrication of green parts with a desirable density that is crucial for advanced ceramic applications.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp8040148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports on an experimental investigation that used a full factorial design to study the main effects and the interaction effect of layer thickness and compaction thickness on the green part density in the binder jetting additive manufacturing of silicon carbide. A two-variable, two-level full factorial design was employed. The results show that the green part density was higher at the low level of layer thickness and at the high level of compaction thickness. These results can be useful in selecting the values of printing variables, enabling the fabrication of green parts with a desirable density that is crucial for advanced ceramic applications.