{"title":"DLSW-YOLOv8n: A Novel Small Maritime Search and Rescue Object Detection Framework for UAV Images with Deformable Large Kernel Net","authors":"Zhumu Fu, Yuehao Xiao, Fazhan Tao, Pengju Si, Longlong Zhu","doi":"10.3390/drones8070310","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicle maritime search and rescue target detection is susceptible to external factors, which can seriously reduce detection accuracy. To address these challenges, the DLSW-YOLOv8n algorithm is proposed combining Deformable Large Kernel Net (DL-Net), SPD-Conv, and WIOU. Firstly, to refine the contextual understanding ability of the model, the DL-Net is integrated into the C2f module of the backbone network. Secondly, to enhance the small target characterization representation, a spatial-depth layer is used instead of pooling in the convolution module, and an additional detection head is integrated into the low-level feature map. The loss function is improved to enhance small target localization performance. Finally, a UAV maritime target detection dataset is employed to demonstrate the effectiveness of the proposed algorithm, whose results show that DLSW-YOLOv8n achieves a detection accuracy of 79.5%, which represents an improvement of 13.1% compared to YOLOv8n.","PeriodicalId":507567,"journal":{"name":"Drones","volume":"44 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones8070310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned aerial vehicle maritime search and rescue target detection is susceptible to external factors, which can seriously reduce detection accuracy. To address these challenges, the DLSW-YOLOv8n algorithm is proposed combining Deformable Large Kernel Net (DL-Net), SPD-Conv, and WIOU. Firstly, to refine the contextual understanding ability of the model, the DL-Net is integrated into the C2f module of the backbone network. Secondly, to enhance the small target characterization representation, a spatial-depth layer is used instead of pooling in the convolution module, and an additional detection head is integrated into the low-level feature map. The loss function is improved to enhance small target localization performance. Finally, a UAV maritime target detection dataset is employed to demonstrate the effectiveness of the proposed algorithm, whose results show that DLSW-YOLOv8n achieves a detection accuracy of 79.5%, which represents an improvement of 13.1% compared to YOLOv8n.