Screw dislocation dipoles in niobium: combination of STM observations and atomistic simulations

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
J. Bonneville, Christophe Coupeau, J. Douin, R. Gröger
{"title":"Screw dislocation dipoles in niobium: combination of STM observations and atomistic simulations","authors":"J. Bonneville, Christophe Coupeau, J. Douin, R. Gröger","doi":"10.1088/1361-651x/ad60e8","DOIUrl":null,"url":null,"abstract":"\n We recently developed an experimental device that allows us to observe the slip traces under stress at the atomic scale. Here, we report experimental results obtained at the latter scale on Nb single crystals making it possible to observe dislocation dipoles, which are evidenced by two slip traces formed by emerging moving dislocations of opposite Burgers vectors ending very close to each other. The geometry and stability of the dislocation dipoles were fully characterized in the framework of linear anisotropic elasticity theory and by atomistic simulations. This allows us to calculate a local opposite stress impeding dislocation motion of the dislocations of the dipole.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad60e8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We recently developed an experimental device that allows us to observe the slip traces under stress at the atomic scale. Here, we report experimental results obtained at the latter scale on Nb single crystals making it possible to observe dislocation dipoles, which are evidenced by two slip traces formed by emerging moving dislocations of opposite Burgers vectors ending very close to each other. The geometry and stability of the dislocation dipoles were fully characterized in the framework of linear anisotropic elasticity theory and by atomistic simulations. This allows us to calculate a local opposite stress impeding dislocation motion of the dislocations of the dipole.
铌中的螺旋位错偶极子:STM 观察与原子模拟的结合
我们最近开发了一种实验装置,可以在原子尺度上观察应力作用下的滑移痕迹。在此,我们报告了在铌单晶上以原子尺度观察差排偶极子的实验结果,差排偶极子由两个滑移轨迹组成,这两个滑移轨迹由布尔格斯矢量相反的移动差排形成,其终点彼此非常接近。在线性各向异性弹性理论和原子模拟的框架下,差排偶极子的几何形状和稳定性得到了充分表征。这使我们能够计算出阻碍位错偶极运动的局部反向应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信