S. N. Malkanthi, K.G.K. Sathsara, P. D. Dharmaratne, H. Galabada
{"title":"Proposed mix design improvements of compressed stabilized earth blocks (CSEB) with particle packing optimization and coir reinforcement","authors":"S. N. Malkanthi, K.G.K. Sathsara, P. D. Dharmaratne, H. Galabada","doi":"10.4038/jnsfsr.v52i2.11495","DOIUrl":null,"url":null,"abstract":"The use of the earth as a building material has been practiced since the beginning of human civilization. Unburnt bricks, rammed earth, adobe, and burnt bricks are some of them. As a result of technological development, adobe has developed into a compressed stabilized earth block (CSEB). The clay percentage of the soil significantly affects the strength of the CSEB. This study focused on controlling the clay percentage by adding larger particles externally using building construction waste and reinforcing them with coconut coir. Different coir amounts by weight from 0.1% to 0.5% with different lengths of 2 cm, 4 cm, 6 cm, and 8 cm were considered for block production. For dry compressive strength and wet compressive strength, the combination of 0.3% coir amount with 6 cm coir length gave the maximum strength, and it also satisfied the required water absorption limit as per the Grade 1 category of the SLS 1382, part 1. After that, using the above combination, the industrial scale (350 × 100 ×175) mm size block was prepared, and its strength also satisfied the SLS 1382 Grade 1 requirements. According to the study, the manufacturing cost for the CSEB is lower than that of cement blocks and clay bricks. The cost for a 1 m2 wall panel preparation using CSEB is 41.52% lower than preparing using burnt clay brick and 8.56% lower than preparing using cement blocks. Therefore, the CSEB can be used as a load-bearing walling material at a low cost and with eco-friendliness. ","PeriodicalId":17429,"journal":{"name":"Journal of the National Science Foundation of Sri Lanka","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the National Science Foundation of Sri Lanka","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.4038/jnsfsr.v52i2.11495","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The use of the earth as a building material has been practiced since the beginning of human civilization. Unburnt bricks, rammed earth, adobe, and burnt bricks are some of them. As a result of technological development, adobe has developed into a compressed stabilized earth block (CSEB). The clay percentage of the soil significantly affects the strength of the CSEB. This study focused on controlling the clay percentage by adding larger particles externally using building construction waste and reinforcing them with coconut coir. Different coir amounts by weight from 0.1% to 0.5% with different lengths of 2 cm, 4 cm, 6 cm, and 8 cm were considered for block production. For dry compressive strength and wet compressive strength, the combination of 0.3% coir amount with 6 cm coir length gave the maximum strength, and it also satisfied the required water absorption limit as per the Grade 1 category of the SLS 1382, part 1. After that, using the above combination, the industrial scale (350 × 100 ×175) mm size block was prepared, and its strength also satisfied the SLS 1382 Grade 1 requirements. According to the study, the manufacturing cost for the CSEB is lower than that of cement blocks and clay bricks. The cost for a 1 m2 wall panel preparation using CSEB is 41.52% lower than preparing using burnt clay brick and 8.56% lower than preparing using cement blocks. Therefore, the CSEB can be used as a load-bearing walling material at a low cost and with eco-friendliness.
期刊介绍:
The Journal of National Science Foundation of Sri Lanka (JNSF) publishes the results of research in Science and Technology. The journal is released four times a year, in March, June, September and December. This journal contains Research Articles, Reviews, Research Communications and Correspondences.
Manuscripts submitted to the journal are accepted on the understanding that they will be reviewed prior to acceptance and that they have not been submitted for publication elsewhere.