Multimodal Data Integration Enhance Longitudinal Prediction of New-Onset Systemic Arterial Hypertension Patients with Suspected Obstructive Sleep Apnea

Yi Yang, Haibing Jiang, Haitao Yang, Xiangeng Hou, Tingting Wu, YingBing Pan, Xiang Xie
{"title":"Multimodal Data Integration Enhance Longitudinal Prediction of New-Onset Systemic Arterial Hypertension Patients with Suspected Obstructive Sleep Apnea","authors":"Yi Yang, Haibing Jiang, Haitao Yang, Xiangeng Hou, Tingting Wu, YingBing Pan, Xiang Xie","doi":"10.31083/j.rcm2507258","DOIUrl":null,"url":null,"abstract":"Background : It is crucial to accurately predict the disease progression of systemic arterial hypertension in order to determine the most effective therapeutic strategy. To achieve this, we have employed a multimodal data-integration approach to predict the longitudinal progression of new-onset systemic arterial hypertension patients with suspected obstructive sleep apnea (OSA) at the individual level. Methods : We developed and validated a predictive nomogram model that utilizes multimodal data, consisting of clinical features, laboratory tests","PeriodicalId":507771,"journal":{"name":"Reviews in Cardiovascular Medicine","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Cardiovascular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.rcm2507258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background : It is crucial to accurately predict the disease progression of systemic arterial hypertension in order to determine the most effective therapeutic strategy. To achieve this, we have employed a multimodal data-integration approach to predict the longitudinal progression of new-onset systemic arterial hypertension patients with suspected obstructive sleep apnea (OSA) at the individual level. Methods : We developed and validated a predictive nomogram model that utilizes multimodal data, consisting of clinical features, laboratory tests
多模态数据整合增强了对疑似阻塞性睡眠呼吸暂停的新发系统性动脉高血压患者的纵向预测能力
背景:为了确定最有效的治疗策略,准确预测系统性动脉高血压的病情发展至关重要。为此,我们采用了一种多模态数据整合方法,从个体层面预测疑似阻塞性睡眠呼吸暂停(OSA)的新发系统性动脉高血压患者的纵向进展。方法:我们开发并验证了一个预测性提名图模型,该模型利用多模态数据,包括临床特征、实验室测试
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信