On S-Weyl’s theorem and property (t) for some classes of operators

IF 0.6 Q3 MATHEMATICS
Pietro Aiena, Fabio Burderi, Salvatore Triolo
{"title":"On S-Weyl’s theorem and property (t) for some classes of operators","authors":"Pietro Aiena,&nbsp;Fabio Burderi,&nbsp;Salvatore Triolo","doi":"10.1007/s44146-024-00147-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider two new variants of the classical Weyl ’s theorem for operators defined on Banach spaces. These variants called <i>S</i>-Weyl’s theorem and property (<i>t</i>) are stronger than the more classical variants of Weyl’s theorem, as <i>a</i>-Weyl’s theorem and property <span>\\((\\omega )\\)</span> studied by several authors. In particular, we explore these two new variants for operators that commute with an injective quasi-nilpotent operators.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"295 - 312"},"PeriodicalIF":0.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00147-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider two new variants of the classical Weyl ’s theorem for operators defined on Banach spaces. These variants called S-Weyl’s theorem and property (t) are stronger than the more classical variants of Weyl’s theorem, as a-Weyl’s theorem and property \((\omega )\) studied by several authors. In particular, we explore these two new variants for operators that commute with an injective quasi-nilpotent operators.

关于某些类算子的 S-韦尔定理和性质 (t)
本文考虑了Banach空间上定义算子的经典Weyl定理的两个新变体。这些被称为S-Weyl定理和性质(t)的变体比Weyl定理的更经典的变体更强大,正如几位作者研究的a-Weyl定理和性质\((\omega )\)。特别地,我们探索了与内射拟幂零算子交换的算子的这两个新变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信