Julián López-Velásquez, Gustavo Alonso Acosta-Amaya, J. A. Jiménez-Builes
{"title":"Enhancing mobile robot navigation: integrating reactive autonomy through deep learning and fuzzy behavior","authors":"Julián López-Velásquez, Gustavo Alonso Acosta-Amaya, J. A. Jiménez-Builes","doi":"10.24050/reia.v21i42.1764","DOIUrl":null,"url":null,"abstract":"Objective: This study aimed to develop a control architecture for reactive autonomous navigation of a mobile robot by integrating Deep Learning techniques and fuzzy behaviors based on traffic signal recognition. Materials: The research utilized transfer learning with the Inception V3 network as a base for training a neural network to identify traffic signals. The experiments were conducted using a Donkey-Car, an Ackermann-steering-type open-source mobile robot, with inherent computational limitations. Results: The implementation of the transfer learning technique yielded a satisfactory result, achieving a high accuracy of 96.2% in identifying traffic signals. However, challenges were encountered due to delays in frames per second (FPS) during testing tracks, attributed to the Raspberry Pi's limited computational capacity. Conclusions: By combining Deep Learning and fuzzy behaviors, the study demonstrated the effectiveness of the control architecture in enhancing the robot's autonomous navigation capabilities. The integration of pre-trained models and fuzzy logic provided adaptability and responsiveness to dynamic traffic scenarios. Future research could focus on optimizing system parameters and exploring applications in more complex environments to further advance autonomous robotics and artificial intelligence technologies.","PeriodicalId":21275,"journal":{"name":"Revista EIA","volume":"17 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista EIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24050/reia.v21i42.1764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to develop a control architecture for reactive autonomous navigation of a mobile robot by integrating Deep Learning techniques and fuzzy behaviors based on traffic signal recognition. Materials: The research utilized transfer learning with the Inception V3 network as a base for training a neural network to identify traffic signals. The experiments were conducted using a Donkey-Car, an Ackermann-steering-type open-source mobile robot, with inherent computational limitations. Results: The implementation of the transfer learning technique yielded a satisfactory result, achieving a high accuracy of 96.2% in identifying traffic signals. However, challenges were encountered due to delays in frames per second (FPS) during testing tracks, attributed to the Raspberry Pi's limited computational capacity. Conclusions: By combining Deep Learning and fuzzy behaviors, the study demonstrated the effectiveness of the control architecture in enhancing the robot's autonomous navigation capabilities. The integration of pre-trained models and fuzzy logic provided adaptability and responsiveness to dynamic traffic scenarios. Future research could focus on optimizing system parameters and exploring applications in more complex environments to further advance autonomous robotics and artificial intelligence technologies.