Wenyuan Liu, Zehui Liu, Jiandong Bai, Qi Jie, Guangwei Zhang, Yan Tian, Jingjing Jin
{"title":"Impact of Imbalanced Modulation on Security of Continuous-Variable Measurement-Device-Independent Quantum Key Distribution","authors":"Wenyuan Liu, Zehui Liu, Jiandong Bai, Qi Jie, Guangwei Zhang, Yan Tian, Jingjing Jin","doi":"10.3390/photonics11070649","DOIUrl":null,"url":null,"abstract":"Continuous variable measurement-device-independent quantum key distribution (CV-MDI-QKD) removes all known or unknown side-channel attacks on detectors. However, it is difficult to fully implement assumptions in the security demonstration model, which leads to potential security vulnerabilities inevitably existing in the practical system. In this paper, we explore the impact of imbalanced modulation at transmitters on the security of the CV-MDI-QKD system mainly using a coherent state and squeezed state under symmetric and asymmetric distances. Assuming two different modulation topologies of senders, we propose a generalized theoretical scheme and evaluate the key parameter achievable of the protocol with the mechanism of imbalanced modulation. The presented results show that imbalanced modulation can achieve a relatively nonlinearly higher secret key rate and transmission distances than the previous protocol which is the balanced modulation variance used by transmitters. The advantage of imbalanced modulation is demonstrated for the system key parameter estimation using numerical simulation under different situations. In addition, the consequences indicate the importance of imbalanced modulation on the performance of CV-MDI-QKD protocol and provide a theoretical framework for experimental implementation as well as the optimal modulated mode.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11070649","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous variable measurement-device-independent quantum key distribution (CV-MDI-QKD) removes all known or unknown side-channel attacks on detectors. However, it is difficult to fully implement assumptions in the security demonstration model, which leads to potential security vulnerabilities inevitably existing in the practical system. In this paper, we explore the impact of imbalanced modulation at transmitters on the security of the CV-MDI-QKD system mainly using a coherent state and squeezed state under symmetric and asymmetric distances. Assuming two different modulation topologies of senders, we propose a generalized theoretical scheme and evaluate the key parameter achievable of the protocol with the mechanism of imbalanced modulation. The presented results show that imbalanced modulation can achieve a relatively nonlinearly higher secret key rate and transmission distances than the previous protocol which is the balanced modulation variance used by transmitters. The advantage of imbalanced modulation is demonstrated for the system key parameter estimation using numerical simulation under different situations. In addition, the consequences indicate the importance of imbalanced modulation on the performance of CV-MDI-QKD protocol and provide a theoretical framework for experimental implementation as well as the optimal modulated mode.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.