An analytical-atomistic model for elastic behavior of silicon nanowires

Sina Zare Pakzad, M. Nasr Esfahani, B. E. Alaca
{"title":"An analytical-atomistic model for elastic behavior of silicon nanowires","authors":"Sina Zare Pakzad, M. Nasr Esfahani, B. E. Alaca","doi":"10.1088/2515-7639/ad618d","DOIUrl":null,"url":null,"abstract":"\n Silicon nanowires entail significant potential as sensors in nanoelectromechanical systems. Despite its crucial impact in such applications, inconsistent trends in mechanical behavior reported in computational and experimental studies remain unexplained. Hence, scale effect in even the most fundamental elastic properties requires clarification. This work introduces a multiscale model to bridge the existing gap between atomistic simulations and experimental observations encountered around a critical dimension of 10 nm. The combined approach of this work is based on molecular dynamics and modified core-shell model and captures the scale effect over a substantial size range. The evolution of the modulus of elasticity is thus studied and linked to nanowire critical dimension through the parameterization of surface inhomogeneity. The developed method is also validated through an analysis of native oxide revealing an average modulus of elasticity of 75 GPa. The method’s applicability can be extended to similar one-dimensional structures with unique surface states.","PeriodicalId":501825,"journal":{"name":"Journal of Physics: Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2515-7639/ad618d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon nanowires entail significant potential as sensors in nanoelectromechanical systems. Despite its crucial impact in such applications, inconsistent trends in mechanical behavior reported in computational and experimental studies remain unexplained. Hence, scale effect in even the most fundamental elastic properties requires clarification. This work introduces a multiscale model to bridge the existing gap between atomistic simulations and experimental observations encountered around a critical dimension of 10 nm. The combined approach of this work is based on molecular dynamics and modified core-shell model and captures the scale effect over a substantial size range. The evolution of the modulus of elasticity is thus studied and linked to nanowire critical dimension through the parameterization of surface inhomogeneity. The developed method is also validated through an analysis of native oxide revealing an average modulus of elasticity of 75 GPa. The method’s applicability can be extended to similar one-dimensional structures with unique surface states.
硅纳米线弹性行为的分析原子模型
硅纳米线作为纳米机电系统中的传感器具有巨大潜力。尽管其在此类应用中具有重要影响,但计算和实验研究中报告的机械行为的不一致趋势仍未得到解释。因此,即使是最基本的弹性特性,也需要澄清尺度效应。这项工作引入了一个多尺度模型,以弥合原子模拟与实验观察之间在 10 纳米临界尺寸附近遇到的现有差距。这项工作的综合方法以分子动力学和改进的核壳模型为基础,捕捉了相当大尺寸范围内的尺度效应。因此研究了弹性模量的演变,并通过表面不均匀性参数化将其与纳米线临界尺寸联系起来。通过对原生氧化物的分析,发现其平均弹性模量为 75 GPa,从而验证了所开发的方法。该方法的适用性可扩展到具有独特表面状态的类似一维结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信