{"title":"AN APPROACH OF WEB STIFFENER CALCULATION IN THIN-WALLED COLUMNS","authors":"Mantas Stulpinas, A. Daniūnas","doi":"10.3846/jcem.2024.21793","DOIUrl":null,"url":null,"abstract":"This article presents an analytical approach for calculating web stiffeners in thin-walled columns. A novel method is introduced, which treats each bending point in the cross-section web as a separate stiffener. The advantages of this calculation method are discussed, highlighting its increased versatility in designing cross-section geometry. The load-bearing strength of axially compressed thin-walled closed cross-section columns, calculated using this method, is compared to analytical calculations based on the Eurocode 3-1-3 methodology and to the finite element method analysis. Calculation results of columns with cross-sections including shallow web stiffeners were up to 9.22% less conservative when compared to the Eurocode 3-1-3 methodology. The results demonstrate great compliance of the proposed method for column crosssections with deep stiffeners. Finite element method (FEM) analysis was performed to verify the calculated load bearing strengths of the columns according to both calculation methodologies. FEM analysis confirmed the reliance of the calculated results and showed, that the load bearing strengths calculated using the newly presented methodology were ranging from 88.77% to 97.86% of load bearing strength calculated using finite element method. These results proved, that the proposed method provides an accurate load bearing strength of thin-walled columns with web stiffeners.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"14 7","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3846/jcem.2024.21793","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents an analytical approach for calculating web stiffeners in thin-walled columns. A novel method is introduced, which treats each bending point in the cross-section web as a separate stiffener. The advantages of this calculation method are discussed, highlighting its increased versatility in designing cross-section geometry. The load-bearing strength of axially compressed thin-walled closed cross-section columns, calculated using this method, is compared to analytical calculations based on the Eurocode 3-1-3 methodology and to the finite element method analysis. Calculation results of columns with cross-sections including shallow web stiffeners were up to 9.22% less conservative when compared to the Eurocode 3-1-3 methodology. The results demonstrate great compliance of the proposed method for column crosssections with deep stiffeners. Finite element method (FEM) analysis was performed to verify the calculated load bearing strengths of the columns according to both calculation methodologies. FEM analysis confirmed the reliance of the calculated results and showed, that the load bearing strengths calculated using the newly presented methodology were ranging from 88.77% to 97.86% of load bearing strength calculated using finite element method. These results proved, that the proposed method provides an accurate load bearing strength of thin-walled columns with web stiffeners.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.