Machine learning-based prediction of the electron energy distribution function and electron density of argon plasma from the optical emission spectra

Fatima Jenina Arellano, Minoru Kusaba, Stephen Wu, Ryo Yoshida, Zoltán Donkó, Peter Hartmann, T. Tsankov, S. Hamaguchi
{"title":"Machine learning-based prediction of the electron energy distribution function and electron density of argon plasma from the optical emission spectra","authors":"Fatima Jenina Arellano, Minoru Kusaba, Stephen Wu, Ryo Yoshida, Zoltán Donkó, Peter Hartmann, T. Tsankov, S. Hamaguchi","doi":"10.1116/6.0003731","DOIUrl":null,"url":null,"abstract":"Optical emission spectroscopy (OES) is a highly valuable tool for plasma characterization due to its nonintrusive and versatile nature. The intensities of the emission lines contain information about the parameters of the underlying plasma–electron density ne and temperature or, more generally, the electron energy distribution function (EEDF). This study aims to obtain the EEDF and ne from the OES data of argon plasma with machine learning (ML) techniques. Two different models, i.e., the Kernel Regression for Functional Data (KRFD) and an artificial neural network (ANN), are used to predict the normalized EEDF and Random Forest (RF) regression is used to predict ne. The ML models are trained with computed plasma data obtained from Particle-in-Cell/Monte Carlo Collision simulations coupled with a collisional–radiative model. All three ML models developed in this study are found to predict with high accuracy what they are trained to predict when the simulated test OES data are used as the input data. When the experimentally measured OES data are used as the input data, the ANN-based model predicts the normalized EEDF with reasonable accuracy under the discharge conditions where the simulation data are known to agree well with the corresponding experimental data. However, the capabilities of the KRFD and RF models to predict the EEDF and ne from experimental OES data are found to be rather limited, reflecting the need for further improvement of the robustness of these models.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical emission spectroscopy (OES) is a highly valuable tool for plasma characterization due to its nonintrusive and versatile nature. The intensities of the emission lines contain information about the parameters of the underlying plasma–electron density ne and temperature or, more generally, the electron energy distribution function (EEDF). This study aims to obtain the EEDF and ne from the OES data of argon plasma with machine learning (ML) techniques. Two different models, i.e., the Kernel Regression for Functional Data (KRFD) and an artificial neural network (ANN), are used to predict the normalized EEDF and Random Forest (RF) regression is used to predict ne. The ML models are trained with computed plasma data obtained from Particle-in-Cell/Monte Carlo Collision simulations coupled with a collisional–radiative model. All three ML models developed in this study are found to predict with high accuracy what they are trained to predict when the simulated test OES data are used as the input data. When the experimentally measured OES data are used as the input data, the ANN-based model predicts the normalized EEDF with reasonable accuracy under the discharge conditions where the simulation data are known to agree well with the corresponding experimental data. However, the capabilities of the KRFD and RF models to predict the EEDF and ne from experimental OES data are found to be rather limited, reflecting the need for further improvement of the robustness of these models.
基于机器学习从光学发射光谱预测氩等离子体的电子能量分布函数和电子密度
光学发射光谱(OES)具有非侵入性和多功能性的特点,是一种非常有价值的等离子体表征工具。发射线的强度包含基本等离子体参数的信息--电子密度 ne 和温度,或者更广泛地说,电子能量分布函数 (EEDF)。本研究旨在利用机器学习(ML)技术从氩等离子体的 OES 数据中获取 EEDF 和 ne。两种不同的模型,即函数数据核回归(KRFD)和人工神经网络(ANN),用于预测归一化 EEDF,随机森林(RF)回归用于预测 ne。ML 模型是利用从 "细胞内粒子"/"蒙特卡洛碰撞 "模拟中获得的计算等离子体数据以及碰撞辐射模型进行训练的。当模拟测试的 OES 数据作为输入数据时,本研究中开发的所有三个 ML 模型都能高精度地预测它们所训练预测的结果。当使用实验测量的 OES 数据作为输入数据时,在已知模拟数据与相应实验数据非常吻合的放电条件下,基于 ANN 的模型能以合理的精度预测归一化 EEDF。然而,KRFD 和 RF 模型根据实验 OES 数据预测 EEDF 和 ne 的能力相当有限,这反映出需要进一步提高这些模型的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信