Molecular Regulation of Bone Turnover in Juvenile Idiopathic Arthritis: Animal Models, Cellular Features and TNFα

IF 3.1 4区 生物学 Q2 Immunology and Microbiology
Harry C Blair, Jonathan Soboloff, I. Tourkova, Jamie L. McCall, Suravi Ray, Margalit E Rosenkranz, Cristina Sobacchi, Lisa J Robinson, John B Barnett
{"title":"Molecular Regulation of Bone Turnover in Juvenile Idiopathic Arthritis: Animal Models, Cellular Features and TNFα","authors":"Harry C Blair, Jonathan Soboloff, I. Tourkova, Jamie L. McCall, Suravi Ray, Margalit E Rosenkranz, Cristina Sobacchi, Lisa J Robinson, John B Barnett","doi":"10.31083/j.fbl2907248","DOIUrl":null,"url":null,"abstract":"We review the abnormal bone turnover that is the basis of idiopathic inflammatory or rheumatoid arthritis and bone loss, with emphasis on Tumor Necrosis Factor-alpha (TNF α )-related mechanisms. We review selected data on idiopathic arthritis in juvenile human disease, and discuss mouse models focusing on induction of bone resorbing cells by TNF α and Receptor Activator of Nuclear Factor kappa B Ligand (RANKL). In both humans and animal models, macrophage-derived cells in the joint, particularly in the synovium and periosteum, degrade bone and cartilage. Mouse models of rheumatoid arthritis share with human disease bone resorbing cells and strong relation to TNF α expression. In humans, differences in therapy and prognosis of arthritis vary with age, and results from early intervention for inflammatory cytokines in juvenile patients are particularly interesting. Mechanisms that contribute to inflammatory arthritis reflect, in large part, inflammatory cytokines that play minor roles in normal bone turnover. Changes in inflammatory cytokines, particularly TNF α , are many times larger, and presented in different locations, than cytokines that regulate normal bone turnover. Recent data from in vitro and mouse models include novel mechanisms described in differentiation of bone resorbing cells in inflammatory arthritis dependent on the Transient Receptor Potential Channel (TRPC) family of calcium channels. Low-molecular weight (MW) inhibitors of TRPC channels add to their potential importance. Associations with inflammatory arthritis unrelated to TNF α are briefly summarized as pointing to alternative mechanisms. We suggest that early detection and monoclonal antibodies targeting cytokines mediating disease progression deserves emphasis.","PeriodicalId":50430,"journal":{"name":"Frontiers in Bioscience-Landmark","volume":"2 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioscience-Landmark","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.31083/j.fbl2907248","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

Abstract

We review the abnormal bone turnover that is the basis of idiopathic inflammatory or rheumatoid arthritis and bone loss, with emphasis on Tumor Necrosis Factor-alpha (TNF α )-related mechanisms. We review selected data on idiopathic arthritis in juvenile human disease, and discuss mouse models focusing on induction of bone resorbing cells by TNF α and Receptor Activator of Nuclear Factor kappa B Ligand (RANKL). In both humans and animal models, macrophage-derived cells in the joint, particularly in the synovium and periosteum, degrade bone and cartilage. Mouse models of rheumatoid arthritis share with human disease bone resorbing cells and strong relation to TNF α expression. In humans, differences in therapy and prognosis of arthritis vary with age, and results from early intervention for inflammatory cytokines in juvenile patients are particularly interesting. Mechanisms that contribute to inflammatory arthritis reflect, in large part, inflammatory cytokines that play minor roles in normal bone turnover. Changes in inflammatory cytokines, particularly TNF α , are many times larger, and presented in different locations, than cytokines that regulate normal bone turnover. Recent data from in vitro and mouse models include novel mechanisms described in differentiation of bone resorbing cells in inflammatory arthritis dependent on the Transient Receptor Potential Channel (TRPC) family of calcium channels. Low-molecular weight (MW) inhibitors of TRPC channels add to their potential importance. Associations with inflammatory arthritis unrelated to TNF α are briefly summarized as pointing to alternative mechanisms. We suggest that early detection and monoclonal antibodies targeting cytokines mediating disease progression deserves emphasis.
幼年特发性关节炎骨转换的分子调控:动物模型、细胞特征和 TNFα
我们回顾了作为特发性炎症性关节炎或类风湿性关节炎和骨质流失基础的骨转换异常,重点是肿瘤坏死因子α(TNF α)相关机制。我们回顾了人类幼年特发性关节炎的部分数据,并讨论了小鼠模型,重点是 TNF α 和核因子卡巴 B 配体受体活化因子(RANKL)对骨吸收细胞的诱导作用。在人类和动物模型中,关节中的巨噬细胞,尤其是滑膜和骨膜中的巨噬细胞,会使骨和软骨降解。类风湿性关节炎的小鼠模型与人类疾病的骨吸收细胞相同,并且与 TNF α 的表达密切相关。在人类中,关节炎的治疗和预后因年龄而异,对青少年患者的炎症细胞因子进行早期干预的结果尤其令人感兴趣。导致炎症性关节炎的机制在很大程度上反映了在正常骨转换过程中起次要作用的炎性细胞因子。与调节正常骨转换的细胞因子相比,炎症细胞因子(尤其是 TNF α)的变化要大很多倍,而且呈现在不同的位置。最近来自体外和小鼠模型的数据包括炎症性关节炎骨吸收细胞分化过程中依赖于钙通道瞬时受体电位通道(TRPC)家族的新机制。TRPC通道的低分子量(MW)抑制剂增加了其潜在的重要性。我们简要总结了与 TNF α 无关的炎症性关节炎的相关性,指出了替代机制。我们建议应重视早期检测和针对介导疾病进展的细胞因子的单克隆抗体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Bioscience-Landmark
Frontiers in Bioscience-Landmark 生物-生化与分子生物学
CiteScore
3.40
自引率
3.20%
发文量
301
审稿时长
3 months
期刊介绍: FBL is an international peer-reviewed open access journal of biological and medical science. FBL publishes state of the art advances in any discipline in the area of biology and medicine, including biochemistry and molecular biology, parasitology, virology, immunology, epidemiology, microbiology, entomology, botany, agronomy, as well as basic medicine, preventive medicine, bioinformatics and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信