Navigating the EU AI Act Maze using a Decision-Tree Approach

Hilmy Hanif, Jorge Constantino, Marie-Theres Sekwenz, M. van Eeten, J. Ubacht, Ben Wagner, Yury Zhauniarovich
{"title":"Navigating the EU AI Act Maze using a Decision-Tree Approach","authors":"Hilmy Hanif, Jorge Constantino, Marie-Theres Sekwenz, M. van Eeten, J. Ubacht, Ben Wagner, Yury Zhauniarovich","doi":"10.1145/3677174","DOIUrl":null,"url":null,"abstract":"The AI Act represents a significant legislative effort by the European Union to govern the use of AI systems according to different risk-related classes, imposing different degrees of compliance obligations to users and providers of AI systems. However, it is often critiqued due to the lack of general public comprehension and effectiveness regarding the classification of AI systems to the corresponding risk classes. To mitigate these shortcomings, we propose a Decision-Tree-based framework aimed at increasing legal compliance and classification clarity. By performing a quantitative evaluation, we show that our framework is especially beneficial to individuals without a legal background, allowing them to enhance the accuracy and speed of AI system classification according to the AI Act. The qualitative study results show that the framework is helpful to all participants, allowing them to justify intuitively made decisions and making the classification process clearer.","PeriodicalId":486991,"journal":{"name":"ACM Journal on Responsible Computing","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Responsible Computing","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1145/3677174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The AI Act represents a significant legislative effort by the European Union to govern the use of AI systems according to different risk-related classes, imposing different degrees of compliance obligations to users and providers of AI systems. However, it is often critiqued due to the lack of general public comprehension and effectiveness regarding the classification of AI systems to the corresponding risk classes. To mitigate these shortcomings, we propose a Decision-Tree-based framework aimed at increasing legal compliance and classification clarity. By performing a quantitative evaluation, we show that our framework is especially beneficial to individuals without a legal background, allowing them to enhance the accuracy and speed of AI system classification according to the AI Act. The qualitative study results show that the framework is helpful to all participants, allowing them to justify intuitively made decisions and making the classification process clearer.
使用决策树方法驾驭欧盟人工智能法案迷宫
人工智能法》是欧盟在立法方面做出的一项重大努力,它按照不同的风险等级对人工智能系统的使用进行管理,对人工智能系统的用户和提供商规定了不同程度的合规义务。然而,由于公众对将人工智能系统划分为相应的风险等级缺乏理解和有效性,该法案经常受到批评。为了弥补这些不足,我们提出了一个基于决策树的框架,旨在提高法律合规性和分类清晰度。通过进行定量评估,我们表明我们的框架尤其有利于没有法律背景的个人,使他们能够根据《人工智能法》提高人工智能系统分类的准确性和速度。定性研究结果表明,该框架对所有参与者都有帮助,使他们能够证明直观决策的合理性,并使分类过程更加清晰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信