Study on Heat and Mass Transfer Performance of Ultra-Thin Micro-Heat Pipes

Energies Pub Date : 2024-07-11 DOI:10.3390/en17143426
Yuming Xiang, Yonghua Sun, Guolin Li, Xiangjuan Liu, Lin Liu, Fangwei Zhao, Xibing Li
{"title":"Study on Heat and Mass Transfer Performance of Ultra-Thin Micro-Heat Pipes","authors":"Yuming Xiang, Yonghua Sun, Guolin Li, Xiangjuan Liu, Lin Liu, Fangwei Zhao, Xibing Li","doi":"10.3390/en17143426","DOIUrl":null,"url":null,"abstract":"With increased heat control requirements for high-heat-flux products in a narrow heat dissipation space, the ultra-thin micro-heat pipe (MHP) with high heat transfer performance has become an ideal heat dissipation component. In this study, the computational fluid dynamics (CFD) method is used to conduct three-dimensional modeling based on the geometric structure characteristics of an ultra-thin MHP. The capillary pressure of the sintered wick is represented by the modified parameter, and a simple and valuable heat and mass transfer model of the ultra-thin MHP is established by fitting the real experimental data through parameter modification. The flow situation of the working medium inside the ultra-thin MHP is analyzed based on the abovementioned parameters. The results show that when the modified parameter is α = 1.5, the temperature equalization requirements of the ultra-thin MHP can be met to the best degree. Moreover, with an increase in heating power, the error value between the surface temperature data of the model and the experimental data of the ultra-thin MHP sample decreases. Under different heating powers, the working medium inside the ultra-thin MHP has the same flow trend. In addition, a 40% increase in temperature difference is found at the junction of the heating section and the adiabatic section, leading to a fluctuation in the temperature gradient on the heat pipe surface. The research results provide a theoretical basis for the model establishment, heat and mass transfer performance investigation, and parameter optimization of ultra-thin MHPs.","PeriodicalId":504870,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/en17143426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With increased heat control requirements for high-heat-flux products in a narrow heat dissipation space, the ultra-thin micro-heat pipe (MHP) with high heat transfer performance has become an ideal heat dissipation component. In this study, the computational fluid dynamics (CFD) method is used to conduct three-dimensional modeling based on the geometric structure characteristics of an ultra-thin MHP. The capillary pressure of the sintered wick is represented by the modified parameter, and a simple and valuable heat and mass transfer model of the ultra-thin MHP is established by fitting the real experimental data through parameter modification. The flow situation of the working medium inside the ultra-thin MHP is analyzed based on the abovementioned parameters. The results show that when the modified parameter is α = 1.5, the temperature equalization requirements of the ultra-thin MHP can be met to the best degree. Moreover, with an increase in heating power, the error value between the surface temperature data of the model and the experimental data of the ultra-thin MHP sample decreases. Under different heating powers, the working medium inside the ultra-thin MHP has the same flow trend. In addition, a 40% increase in temperature difference is found at the junction of the heating section and the adiabatic section, leading to a fluctuation in the temperature gradient on the heat pipe surface. The research results provide a theoretical basis for the model establishment, heat and mass transfer performance investigation, and parameter optimization of ultra-thin MHPs.
超薄微热管的传热传质性能研究
随着在狭窄散热空间内对高热流产品的热量控制要求的提高,具有高传热性能的超薄微热管(MHP)已成为一种理想的散热元件。本研究根据超薄微热管的几何结构特征,采用计算流体动力学(CFD)方法进行三维建模。通过修改参数拟合实际实验数据,建立了一个简单且有价值的超薄 MHP 传热传质模型。根据上述参数分析了超薄 MHP 内部工作介质的流动情况。结果表明,当修改后的参数为 α = 1.5 时,超薄 MHP 的温度均衡要求能得到最大程度的满足。此外,随着加热功率的增加,模型表面温度数据与超薄 MHP 样品实验数据之间的误差值减小。在不同的加热功率下,超薄 MHP 内部的工作介质具有相同的流动趋势。此外,加热段和绝热段交界处的温差增加了 40%,导致热管表面的温度梯度出现波动。研究结果为超薄型 MHP 的模型建立、传热传质性能研究和参数优化提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信