The quality of circulating water and its impact on the operation of heat exchange equipment at petrochemical enterprises

O. Deryugina, E. Skvortsova, A. L. Savhenkov, D. A. Belov
{"title":"The quality of circulating water and its impact on the operation of heat exchange equipment at petrochemical enterprises","authors":"O. Deryugina, E. Skvortsova, A. L. Savhenkov, D. A. Belov","doi":"10.31660/0445-0108-2024-3-148-159","DOIUrl":null,"url":null,"abstract":"   The correct operation of heat exchange equipment has a direct impact on the quality of the products produced. The study of critical factors impeding the stable operation of equipment at petrochemical enterprises and the elimination of the main ones are of paramount importance. The primary challenge in the operation of heat exchange equipment is the quality of circulating water, which serves as the primary coolant. The analysis of circulating water and scale from an industrial site by the method of atomic emission spectrometry with inductively coupled plasma was performed, which made it possible to identify bottlenecks that impede the operation of the equipment. Scaling and the corrosive effects of water are the most detrimental. Furthermore, a methodology was devised to ascertain the elemental composition of solid deposits derived from heat exchange equipment. The malfunction of heat exchange equipment can give rise to significant issues in production. To prevent emergency production shutdowns, the authors of the article consider a method for improving the quality of circulating water by using the latest reagent, which can reduce the corrosive effect and reduce salt deposition inside heat exchangers. The proposed inhibitor offers a number of advantages, including a reduction in the environmental impact and high work efficiency.","PeriodicalId":240239,"journal":{"name":"Oil and Gas Studies","volume":"126 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil and Gas Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31660/0445-0108-2024-3-148-159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

   The correct operation of heat exchange equipment has a direct impact on the quality of the products produced. The study of critical factors impeding the stable operation of equipment at petrochemical enterprises and the elimination of the main ones are of paramount importance. The primary challenge in the operation of heat exchange equipment is the quality of circulating water, which serves as the primary coolant. The analysis of circulating water and scale from an industrial site by the method of atomic emission spectrometry with inductively coupled plasma was performed, which made it possible to identify bottlenecks that impede the operation of the equipment. Scaling and the corrosive effects of water are the most detrimental. Furthermore, a methodology was devised to ascertain the elemental composition of solid deposits derived from heat exchange equipment. The malfunction of heat exchange equipment can give rise to significant issues in production. To prevent emergency production shutdowns, the authors of the article consider a method for improving the quality of circulating water by using the latest reagent, which can reduce the corrosive effect and reduce salt deposition inside heat exchangers. The proposed inhibitor offers a number of advantages, including a reduction in the environmental impact and high work efficiency.
循环水质量及其对石化企业热交换设备运行的影响
热交换设备的正确运行直接影响到所生产产品的质量。研究阻碍石化企业设备稳定运行的关键因素并消除主要因素至关重要。热交换设备运行的首要挑战是作为主要冷却剂的循环水的质量。采用电感耦合等离子体原子发射光谱法对工业现场的循环水和水垢进行了分析,从而找出了阻碍设备运行的瓶颈。水垢和水的腐蚀作用是最有害的。此外,还设计了一种方法来确定热交换设备产生的固体沉积物的元素组成。热交换设备的故障会给生产带来重大问题。为了防止紧急停产,文章作者考虑了一种使用最新试剂改善循环水质量的方法,这种试剂可以降低腐蚀效果,减少热交换器内的盐沉积。所提出的抑制剂具有许多优点,包括减少对环境的影响和工作效率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信