V2O3/VN electrocatalysts with coherent heterogeneous interfaces for selecting low‐energy nitrogen reduction pathways

SusMat Pub Date : 2024-07-11 DOI:10.1002/sus2.226
Taehee An, Chengkai Xia, Minyeong Je, Hyunjung Lee, Seulgi Ji, Min‐Cheol Kim, S. Surendran, Mi-Kyung Han, Jaehyoung Lim, Dong‐Kyu Lee, Joonyoung Kim, Tae-Hoon Kim, Heechae Choi, Jung Kyu Kim, U. Sim
{"title":"V2O3/VN electrocatalysts with coherent heterogeneous interfaces for selecting low‐energy nitrogen reduction pathways","authors":"Taehee An, Chengkai Xia, Minyeong Je, Hyunjung Lee, Seulgi Ji, Min‐Cheol Kim, S. Surendran, Mi-Kyung Han, Jaehyoung Lim, Dong‐Kyu Lee, Joonyoung Kim, Tae-Hoon Kim, Heechae Choi, Jung Kyu Kim, U. Sim","doi":"10.1002/sus2.226","DOIUrl":null,"url":null,"abstract":"Electrochemical nitrogen reduction reaction (NRR) is a sustainable alternative to the Haber‒Bosch process for ammonia (NH3) production. However, the significant uphill energy in the multistep NRR pathway is a bottleneck for favorable serial reactions. To overcome this challenge, we designed a vanadium oxide/nitride (V2O3/VN) hybrid electrocatalyst in which V2O3 and VN coexist coherently at the heterogeneous interface. Since single‐phase V2O3 and VN exhibit different surface catalytic kinetics for NRR, the V2O3/VN hybrid electrocatalyst can provide alternating reaction pathways, selecting a lower energy pathway for each material in the serial NRR pathway. As a result, the ammonia yield of the V2O3/VN hybrid electrocatalyst was 219.6 µg h−1 cm−2, and the Faradaic efficiency was 18.9%, which is much higher than that of single‐phase VN, V2O3, and VNxOy solid solution catalysts without heterointerfaces. Density functional theory calculations confirmed that the composition of these hybrid electrocatalysts allows NRR to proceed from a multistep reduction reaction to a low‐energy reaction pathway through the migration and adsorption of intermediate species. Therefore, the design of metal oxide/nitride hybrids with coherent heterointerfaces provides a novel strategy for synthesizing highly efficient electrochemical catalysts that induce steps favorable for the efficient low‐energy progression of NRR.","PeriodicalId":506315,"journal":{"name":"SusMat","volume":"118 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SusMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical nitrogen reduction reaction (NRR) is a sustainable alternative to the Haber‒Bosch process for ammonia (NH3) production. However, the significant uphill energy in the multistep NRR pathway is a bottleneck for favorable serial reactions. To overcome this challenge, we designed a vanadium oxide/nitride (V2O3/VN) hybrid electrocatalyst in which V2O3 and VN coexist coherently at the heterogeneous interface. Since single‐phase V2O3 and VN exhibit different surface catalytic kinetics for NRR, the V2O3/VN hybrid electrocatalyst can provide alternating reaction pathways, selecting a lower energy pathway for each material in the serial NRR pathway. As a result, the ammonia yield of the V2O3/VN hybrid electrocatalyst was 219.6 µg h−1 cm−2, and the Faradaic efficiency was 18.9%, which is much higher than that of single‐phase VN, V2O3, and VNxOy solid solution catalysts without heterointerfaces. Density functional theory calculations confirmed that the composition of these hybrid electrocatalysts allows NRR to proceed from a multistep reduction reaction to a low‐energy reaction pathway through the migration and adsorption of intermediate species. Therefore, the design of metal oxide/nitride hybrids with coherent heterointerfaces provides a novel strategy for synthesizing highly efficient electrochemical catalysts that induce steps favorable for the efficient low‐energy progression of NRR.
具有相干异质界面的 V2O3/VN 电催化剂,用于选择低能氮还原途径
电化学氮还原反应(NRR)是哈伯-博什合成氨(NH3)生产工艺的一种可持续替代工艺。然而,多步氮还原反应途径中的大量上坡能量是实现有利的连续反应的瓶颈。为了克服这一挑战,我们设计了一种氧化钒/氮化物(V2O3/VN)混合电催化剂,其中 V2O3 和 VN 在异质界面上共存。由于单相 V2O3 和 VN 在无还原反应中表现出不同的表面催化动力学,V2O3/VN 混合电催化剂可以提供交替的反应途径,在串联无还原反应途径中为每种材料选择能量较低的途径。因此,V2O3/VN 混合电催化剂的氨产量为 219.6 µg h-1 cm-2,法拉第效率为 18.9%,远高于单相 VN、V2O3 和不含异质界面的 VNxOy 固溶体催化剂。密度泛函理论计算证实,这些杂化电催化剂的组成允许 NRR 通过中间物种的迁移和吸附,从多步还原反应进入低能反应途径。因此,设计具有相干异质界面的金属氧化物/氮化物杂化物为合成高效电化学催化剂提供了一种新策略,这种催化剂能诱导出有利于 NRR 高效低能进展的步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信