A Compressed Sensing Random Measurement Matrix Construction Method: Block Sparse Random Measurement Matrix

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Yaofu Yu, Zhen Zhang, Weiguo Lin
{"title":"A Compressed Sensing Random Measurement Matrix Construction Method: Block Sparse Random Measurement Matrix","authors":"Yaofu Yu, Zhen Zhang, Weiguo Lin","doi":"10.1088/1361-6501/ad6205","DOIUrl":null,"url":null,"abstract":"\n Compressed sensing (CS) has shown a huge advantage on data compressing and transmission, and designing a suitable measurement matrix is helpful for performance of the CS. Recently, traditional CS measurement matrices have been well applied in many fields, however, there are still problems, such as long construction time, large storage space, and poor real-time performance. Aiming at above problems, combining the advantages of sparse measurement matrix and identity matrix, a new construction method of measurement matrix named Block Sparse Random Measurement Matrix (BSRMM) is proposed. The proposed matrix satisfies restricted isometry property (RIP) with high probability, has faster construction speed, smaller storage space, and is easy to implement. Finally, the compressed sampling process with the BSRMM is implemented on a wireless sensor node with microprocessor STM32F407, and a good reconstruction effect is achieved on the simulated leak signals from a small gas pipeline network, which verifies the effectiveness of the BSRMM.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad6205","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Compressed sensing (CS) has shown a huge advantage on data compressing and transmission, and designing a suitable measurement matrix is helpful for performance of the CS. Recently, traditional CS measurement matrices have been well applied in many fields, however, there are still problems, such as long construction time, large storage space, and poor real-time performance. Aiming at above problems, combining the advantages of sparse measurement matrix and identity matrix, a new construction method of measurement matrix named Block Sparse Random Measurement Matrix (BSRMM) is proposed. The proposed matrix satisfies restricted isometry property (RIP) with high probability, has faster construction speed, smaller storage space, and is easy to implement. Finally, the compressed sampling process with the BSRMM is implemented on a wireless sensor node with microprocessor STM32F407, and a good reconstruction effect is achieved on the simulated leak signals from a small gas pipeline network, which verifies the effectiveness of the BSRMM.
一种压缩传感随机测量矩阵构建方法:块稀疏随机测量矩阵
压缩传感(CS)在数据压缩和传输方面具有巨大优势,而设计合适的测量矩阵有助于提高 CS 的性能。近年来,传统的 CS 测量矩阵在许多领域得到了很好的应用,但仍存在构建时间长、存储空间大、实时性差等问题。针对上述问题,结合稀疏测量矩阵和标识矩阵的优点,提出了一种新的测量矩阵构造方法,即块稀疏随机测量矩阵(Block Sparse Random Measurement Matrix,BSRMM)。该矩阵高概率地满足受限等距特性(RIP),构建速度快,存储空间小,易于实现。最后,利用 BSRMM 在带有微处理器 STM32F407 的无线传感器节点上实现了压缩采样过程,并对来自小型燃气管网的模拟泄漏信号取得了良好的重构效果,验证了 BSRMM 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Measurement Science and Technology
Measurement Science and Technology 工程技术-工程:综合
CiteScore
4.30
自引率
16.70%
发文量
656
审稿时长
4.9 months
期刊介绍: Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented. Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信