Complex Dynamics of a Discrete Prey–Predator Model Exposing to Harvesting and Allee Effect on the Prey Species with Chaos Control

Deniz Elmacı, Figen Kangalgil
{"title":"Complex Dynamics of a Discrete Prey–Predator Model Exposing to Harvesting and Allee Effect on the Prey Species with Chaos Control","authors":"Deniz Elmacı, Figen Kangalgil","doi":"10.1142/s0218127424501141","DOIUrl":null,"url":null,"abstract":"This study discusses the dynamic behaviors of the prey–predator model subject to the Allee effect and the harvesting of prey species. The existence of fixed points and the topological categorization of the co-existing fixed point of the model are determined. It is shown that the discrete-time prey–predator model can undergo Flip and Neimark–Sacker bifurcations under some parametric assumptions using bifurcation theory and the center manifold theorem. A chaos control technique called the feedback-control method is utilized to eliminate chaos. Numerical examples are given to support the theoretical findings and investigate chaos strategies’ effectiveness and feasibility. Additionally, bifurcation diagrams, phase portraits, maximum Lyapunov exponents, and a graph showing chaos control are demonstrated.","PeriodicalId":506426,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"14 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127424501141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study discusses the dynamic behaviors of the prey–predator model subject to the Allee effect and the harvesting of prey species. The existence of fixed points and the topological categorization of the co-existing fixed point of the model are determined. It is shown that the discrete-time prey–predator model can undergo Flip and Neimark–Sacker bifurcations under some parametric assumptions using bifurcation theory and the center manifold theorem. A chaos control technique called the feedback-control method is utilized to eliminate chaos. Numerical examples are given to support the theoretical findings and investigate chaos strategies’ effectiveness and feasibility. Additionally, bifurcation diagrams, phase portraits, maximum Lyapunov exponents, and a graph showing chaos control are demonstrated.
一个离散猎物-捕食者模型的复杂动力学:猎物物种面临的捕食和混沌控制下的近邻效应
本研究讨论了猎物-捕食者模型在阿利效应和猎物物种被捕食情况下的动态行为。确定了模型定点的存在和共存定点的拓扑分类。利用分岔理论和中心流形定理证明,在某些参数假设条件下,离散时间猎物-捕食者模型会发生 Flip 分岔和 Neimark-Sacker 分岔。利用一种称为反馈控制法的混沌控制技术来消除混沌。为支持理论研究结果,并研究混沌策略的有效性和可行性,给出了数值示例。此外,还展示了分岔图、相位图、最大 Lyapunov 指数和显示混沌控制的图表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信