Detection and Classification of Voltage Disturbances in Electrical Power Systems Based on Multiresolution Analysis and Negative Selection Algorithm

Energies Pub Date : 2024-07-11 DOI:10.3390/en17143403
Haislan Bernardes, C. R. Minussi
{"title":"Detection and Classification of Voltage Disturbances in Electrical Power Systems Based on Multiresolution Analysis and Negative Selection Algorithm","authors":"Haislan Bernardes, C. R. Minussi","doi":"10.3390/en17143403","DOIUrl":null,"url":null,"abstract":"Early detection of threats to electrical energy distribution systems helps professionals make decisions and mitigate interruptions in supply and improper activation of the protection system. Biologically inspired methods, e.g., artificial neural networks, genetic algorithms, and ant colonies, solve optimization problems and facilitate pattern recognition and decision-making. The present work presents a tool for detecting and classifying voltage disturbances based on the negative selection algorithm, which identifies and eliminates self-reactive cells, associated with multiresolution analysis, which analyzes the signal at different scales of detail, allowing a more complete understanding and detailed description of the phenomenon in question. The negative wavelet selection algorithm demonstrates robustness to detect and classify disturbances.","PeriodicalId":504870,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/en17143403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Early detection of threats to electrical energy distribution systems helps professionals make decisions and mitigate interruptions in supply and improper activation of the protection system. Biologically inspired methods, e.g., artificial neural networks, genetic algorithms, and ant colonies, solve optimization problems and facilitate pattern recognition and decision-making. The present work presents a tool for detecting and classifying voltage disturbances based on the negative selection algorithm, which identifies and eliminates self-reactive cells, associated with multiresolution analysis, which analyzes the signal at different scales of detail, allowing a more complete understanding and detailed description of the phenomenon in question. The negative wavelet selection algorithm demonstrates robustness to detect and classify disturbances.
基于多分辨率分析和负选择算法的电力系统电压干扰检测与分类
及早发现对配电系统的威胁有助于专业人员做出决策,减少供电中断和保护系统的不当启动。受生物学启发的方法,如人工神经网络、遗传算法和蚁群,可以解决优化问题,促进模式识别和决策。负小波选择算法可识别和消除自反应细胞,并与多分辨率分析相结合,在不同的细节尺度上分析信号,从而更全面地了解和详细描述有关现象。负小波选择算法显示了检测和分类干扰的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信