Enhancing the accuracy of stock return movement prediction in Indonesia through recent fundamental value incorporation in multilayer perceptron

Stiven Agusta, Fu'ad Rakhman, Jogiyanto H. Mustakini, Singgih Wijayana
{"title":"Enhancing the accuracy of stock return movement prediction in Indonesia through recent fundamental value incorporation in multilayer perceptron","authors":"Stiven Agusta, Fu'ad Rakhman, Jogiyanto H. Mustakini, Singgih Wijayana","doi":"10.1108/ajar-01-2024-0006","DOIUrl":null,"url":null,"abstract":"PurposeThe study aims to explore how integrating recent fundamental values (RFVs) from conventional accounting studies enhances the accuracy of a machine learning (ML) model for predicting stock return movement in Indonesia.Design/methodology/approachThe study uses multilayer perceptron (MLP) analysis, a deep learning model subset of the ML method. The model utilizes findings from conventional accounting studies from 2019 to 2021 and samples from 10 firms in the Indonesian stock market from September 2018 to August 2019.FindingsIncorporating RFVs improves predictive accuracy in the MLP model, especially in long reporting data ranges. The accuracy of the RFVs is also higher than that of raw data and common accounting ratio inputs.Research limitations/implicationsThe study uses Indonesian firms as its sample. We believe our findings apply to other emerging Asian markets and add to the existing ML literature on stock prediction. Nevertheless, expanding to different samples could strengthen the results of this study.Practical implicationsGovernments can regulate RFV-based artificial intelligence (AI) applications for stock prediction to enhance decision-making about stock investment. Also, practitioners, analysts and investors can be inspired to develop RFV-based AI tools.Originality/valueStudies in the literature on ML-based stock prediction find limited use for fundamental values and mainly apply technical indicators. However, this study demonstrates that including RFV in the ML model improves investors’ decision-making and minimizes unethical data use and artificial intelligence-based fraud.","PeriodicalId":514562,"journal":{"name":"Asian Journal of Accounting Research","volume":"10 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Accounting Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ajar-01-2024-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeThe study aims to explore how integrating recent fundamental values (RFVs) from conventional accounting studies enhances the accuracy of a machine learning (ML) model for predicting stock return movement in Indonesia.Design/methodology/approachThe study uses multilayer perceptron (MLP) analysis, a deep learning model subset of the ML method. The model utilizes findings from conventional accounting studies from 2019 to 2021 and samples from 10 firms in the Indonesian stock market from September 2018 to August 2019.FindingsIncorporating RFVs improves predictive accuracy in the MLP model, especially in long reporting data ranges. The accuracy of the RFVs is also higher than that of raw data and common accounting ratio inputs.Research limitations/implicationsThe study uses Indonesian firms as its sample. We believe our findings apply to other emerging Asian markets and add to the existing ML literature on stock prediction. Nevertheless, expanding to different samples could strengthen the results of this study.Practical implicationsGovernments can regulate RFV-based artificial intelligence (AI) applications for stock prediction to enhance decision-making about stock investment. Also, practitioners, analysts and investors can be inspired to develop RFV-based AI tools.Originality/valueStudies in the literature on ML-based stock prediction find limited use for fundamental values and mainly apply technical indicators. However, this study demonstrates that including RFV in the ML model improves investors’ decision-making and minimizes unethical data use and artificial intelligence-based fraud.
通过将近期基本面价值纳入多层感知器提高印度尼西亚股票回报率变动预测的准确性
目的本研究旨在探讨整合传统会计研究中的近期基本面价值(RFV)如何提高机器学习(ML)模型预测印度尼西亚股票回报率变动的准确性.设计/方法/方法本研究使用多层感知器(MLP)分析,这是ML方法的一个深度学习模型子集。该模型利用了 2019 年至 2021 年传统会计研究的结果以及 2018 年 9 月至 2019 年 8 月印尼股市 10 家公司的样本。研究结果纳入 RFV 提高了 MLP 模型的预测准确性,尤其是在长报告数据范围内。RFV 的准确性也高于原始数据和普通会计比率输入的准确性。研究局限/意义本研究以印尼企业为样本。我们相信我们的研究结果适用于亚洲其他新兴市场,并为现有的股票预测 ML 文献添砖加瓦。实际意义政府可以对基于 RFV 的人工智能(AI)股票预测应用进行监管,以提高股票投资的决策水平。此外,从业人员、分析师和投资者也可以从中受到启发,开发基于 RFV 的人工智能工具。原创性/价值关于基于 ML 的股票预测的文献研究发现,基本面价值的应用有限,主要应用于技术指标。然而,本研究表明,将 RFV 纳入 ML 模型可改善投资者的决策,并最大限度地减少不道德的数据使用和基于人工智能的欺诈行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信