Negative order Sobolev cubatures: preconditioners of partial differential equation learning tasks circumventing numerical stiffness

Juan-Esteban Suarez Cardona, Phil-Alexander Hofmann, Michael Hecht
{"title":"Negative order Sobolev cubatures: preconditioners of partial differential equation learning tasks circumventing numerical stiffness","authors":"Juan-Esteban Suarez Cardona, Phil-Alexander Hofmann, Michael Hecht","doi":"10.1088/2632-2153/ad62ac","DOIUrl":null,"url":null,"abstract":"\n We present a variational approach aimed at enhancing the training of Physics-Informed Neural Networks (PINNs) and more general surrogate models for learning partial differential equations (PDEs). In particular, we extend our formerly introduced notion of Sobolev cubatures to negative orders, enabling the approximation of negative order Sobolev norms. We mathematically prove the effect of negative order Sobolev cubatures in improving the condition number of discrete PDE learning problems, providing balancing scalars that mitigate numerical stiffness issues caused by loss imbalances. Additionally, we consider polynomial surrogate models (PSMs), which maintain the flexibility of PINN formulations while preserving the convexity structure of the PDE operators. The combination of negative order Sobolev cubatures and PSMs delivers well-conditioned discrete optimization problems, solvable via an exponentially fast convergent gradient descent for λ-convex losses. Our theoretical contributions are supported by numerical experiments, addressing linear and non-linear, forward and inverse PDE problems. These experiments show that the Sobolev cubature-based PSMs emerge as the superior state-of-the-art PINN technique.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"36 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad62ac","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a variational approach aimed at enhancing the training of Physics-Informed Neural Networks (PINNs) and more general surrogate models for learning partial differential equations (PDEs). In particular, we extend our formerly introduced notion of Sobolev cubatures to negative orders, enabling the approximation of negative order Sobolev norms. We mathematically prove the effect of negative order Sobolev cubatures in improving the condition number of discrete PDE learning problems, providing balancing scalars that mitigate numerical stiffness issues caused by loss imbalances. Additionally, we consider polynomial surrogate models (PSMs), which maintain the flexibility of PINN formulations while preserving the convexity structure of the PDE operators. The combination of negative order Sobolev cubatures and PSMs delivers well-conditioned discrete optimization problems, solvable via an exponentially fast convergent gradient descent for λ-convex losses. Our theoretical contributions are supported by numerical experiments, addressing linear and non-linear, forward and inverse PDE problems. These experiments show that the Sobolev cubature-based PSMs emerge as the superior state-of-the-art PINN technique.
负阶索博列夫立方体:偏微分方程学习任务中规避数值僵化的前置条件器
我们提出了一种变分方法,旨在加强物理信息神经网络(PINNs)和学习偏微分方程(PDEs)的更一般代用模型的训练。特别是,我们将以前引入的 Sobolev 立方概念扩展到负阶,从而实现了负阶 Sobolev 准则的近似。我们用数学方法证明了负阶索博列夫立方在改善离散 PDE 学习问题的条件数方面的效果,并提供了平衡标量,以缓解损失不平衡引起的数值僵化问题。此外,我们还考虑了多项式代理模型(PSM),它既保持了 PINN 公式的灵活性,又保留了 PDE 算子的凸性结构。负阶 Sobolev 立方和 PSM 的结合提供了条件良好的离散优化问题,可通过指数级快速收敛梯度下降法解决 λ 凸损失。我们的理论贡献得到了解决线性和非线性、正向和反向 PDE 问题的数值实验的支持。这些实验表明,基于 Sobolev 立方的 PSMs 是最先进的 PINN 技术中的佼佼者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信