Flexible Organic Electrochemical Transistors for Energy-Efficient Neuromorphic Computing

Nanomaterials Pub Date : 2024-07-12 DOI:10.3390/nano14141195
Li Zhu, Junchen Lin, Yixin Zhu, Jie Wu, Xiang Wan, Huabin Sun, Zhihao Yu, Yong Xu, Cheeleong Tan
{"title":"Flexible Organic Electrochemical Transistors for Energy-Efficient Neuromorphic Computing","authors":"Li Zhu, Junchen Lin, Yixin Zhu, Jie Wu, Xiang Wan, Huabin Sun, Zhihao Yu, Yong Xu, Cheeleong Tan","doi":"10.3390/nano14141195","DOIUrl":null,"url":null,"abstract":"Brain-inspired flexible neuromorphic devices are of great significance for next-generation high-efficiency wearable sensing and computing systems. In this paper, we propose a flexible organic electrochemical transistor using poly[(bithiophene)-alternate-(2,5-di(2-octyldodecyl)- 3,6-di(thienyl)-pyrrolyl pyrrolidone)] (DPPT-TT) as the organic semiconductor and poly(methyl methacrylate) (PMMA)/LiClO4 solid-state electrolyte as the gate dielectric layer. Under gate voltage modulation, an electric double layer (EDL) forms between the dielectric layer and the channel, allowing the device to operate at low voltages. Furthermore, by leveraging the double layer effect and electrochemical doping within the device, we successfully mimic various synaptic behaviors, including excitatory post-synaptic currents (EPSC), paired-pulse facilitation (PPF), high-pass filtering characteristics, transitions from short-term plasticity (STP) to long-term plasticity (LTP), and demonstrate its image recognition and storage capabilities in a 3 × 3 array. Importantly, the device’s electrical performance remains stable even after bending, achieving ultra-low-power consumption of 2.08 fJ per synaptic event at −0.001 V. This research may contribute to the development of ultra-low-power neuromorphic computing, biomimetic robotics, and artificial intelligence.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nano14141195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain-inspired flexible neuromorphic devices are of great significance for next-generation high-efficiency wearable sensing and computing systems. In this paper, we propose a flexible organic electrochemical transistor using poly[(bithiophene)-alternate-(2,5-di(2-octyldodecyl)- 3,6-di(thienyl)-pyrrolyl pyrrolidone)] (DPPT-TT) as the organic semiconductor and poly(methyl methacrylate) (PMMA)/LiClO4 solid-state electrolyte as the gate dielectric layer. Under gate voltage modulation, an electric double layer (EDL) forms between the dielectric layer and the channel, allowing the device to operate at low voltages. Furthermore, by leveraging the double layer effect and electrochemical doping within the device, we successfully mimic various synaptic behaviors, including excitatory post-synaptic currents (EPSC), paired-pulse facilitation (PPF), high-pass filtering characteristics, transitions from short-term plasticity (STP) to long-term plasticity (LTP), and demonstrate its image recognition and storage capabilities in a 3 × 3 array. Importantly, the device’s electrical performance remains stable even after bending, achieving ultra-low-power consumption of 2.08 fJ per synaptic event at −0.001 V. This research may contribute to the development of ultra-low-power neuromorphic computing, biomimetic robotics, and artificial intelligence.
用于高能效神经形态计算的柔性有机电化学晶体管
大脑启发的柔性神经形态器件对下一代高效可穿戴传感和计算系统具有重要意义。本文提出了一种柔性有机电化学晶体管,采用聚[(噻吩)-替代物-(2,5-二(2-辛基十二烷基)-3,6-二(噻吩基)-吡咯烷酮)](DPPT-TT)作为有机半导体,聚(甲基丙烯酸甲酯)(PMMA)/LiClO4 固态电解质作为栅极介电层。在栅极电压调制下,介电层和沟道之间会形成电双层(EDL),从而使器件能够在低电压下工作。此外,通过利用双层效应和器件内的电化学掺杂,我们成功地模拟了各种突触行为,包括兴奋性突触后电流(EPSC)、成对脉冲促进(PPF)、高通滤波器特性、从短期可塑性(STP)到长期可塑性(LTP)的过渡,并在 3 × 3 阵列中展示了其图像识别和存储能力。重要的是,该装置的电气性能即使在弯曲后也能保持稳定,在-0.001 V电压下实现了每个突触事件2.08 fJ的超低功耗。这项研究可能有助于超低功耗神经形态计算、仿生机器人和人工智能的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信