Poisson Electrodynamics With Charged Matter Fields

Alexey A Sharapov
{"title":"Poisson Electrodynamics With Charged Matter Fields","authors":"Alexey A Sharapov","doi":"10.1088/1751-8121/ad62c7","DOIUrl":null,"url":null,"abstract":"\n Poisson electrodynamics is the low-energy limit of a rank-one noncommutative gauge theory. It admits a closed formulation in terms of a Poisson structure on the space-time manifold and reproduces ordinary classical electrodynamics in the commutative limit. In this paper, we address and solve the problem of minimal coupling to charged matter fields with a proper commutative limit. Our construction essentially relies on the geometry of symplectic groupoids and works for all integrable Poisson manifolds. An additional advantage of our approach is that the corresponding Lagrangians can be defined on an arbitrary metric background.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"34 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad62c7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Poisson electrodynamics is the low-energy limit of a rank-one noncommutative gauge theory. It admits a closed formulation in terms of a Poisson structure on the space-time manifold and reproduces ordinary classical electrodynamics in the commutative limit. In this paper, we address and solve the problem of minimal coupling to charged matter fields with a proper commutative limit. Our construction essentially relies on the geometry of symplectic groupoids and works for all integrable Poisson manifolds. An additional advantage of our approach is that the corresponding Lagrangians can be defined on an arbitrary metric background.
带电物质场的泊松电动力学
泊松电动力学是秩一非交换规理论的低能极限。它可以用时空流形上的泊松结构进行封闭表述,并在换元极限中再现普通经典电动力学。在本文中,我们用适当的换元极限处理并解决了与带电物质场的最小耦合问题。我们的构造本质上依赖于交点群几何,适用于所有可积分泊松流形。我们方法的另一个优势是,相应的拉格朗日可以定义在任意度量背景上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信