MoO3 with the Synergistic Effect of Sulfur Doping and Oxygen Vacancies: The Influence of S Doping on the Structure, Morphology, and Optoelectronic Properties

Nanomaterials Pub Date : 2024-07-12 DOI:10.3390/nano14141189
Jian Yu, Zhaokang Zheng, Aiwu Wang, Muhammad Humayun, Y. A. Attia
{"title":"MoO3 with the Synergistic Effect of Sulfur Doping and Oxygen Vacancies: The Influence of S Doping on the Structure, Morphology, and Optoelectronic Properties","authors":"Jian Yu, Zhaokang Zheng, Aiwu Wang, Muhammad Humayun, Y. A. Attia","doi":"10.3390/nano14141189","DOIUrl":null,"url":null,"abstract":"Molybdenum trioxide (MoO3) is an attractive semiconductor. Thus, bandgap engineering toward photoelectronic applications is appealing yet not well studied. Here, we report the incorporation of sulfur atoms into MoO3, using sulfur powder as a source of sulfur, via a self-developed hydrothermal synthesis approach. The formation of Mo-S bonds in the MoO3 material with the synergistic effect of sulfur doping and oxygen vacancies (designated as S-MoO3−x) is confirmed using Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR). The bandgap is tuned from 2.68 eV to 2.57 eV upon sulfur doping, as confirmed by UV-VIS DRS spectra. Some MoS2 phase is identified with sulfur doping by referring to the photoluminescence (PL) spectra and electrochemical impedance spectroscopy (EIS), allowing significantly improved charge carrier separation and electron transfer efficiency. Therefore, the as-prepared S-MoO3−x delivers a sensitive photocurrent response and splendid cycling stability. This study on the synergistic effect of sulfur doping and oxygen vacancies provides key insights into the impact of doping strategies on MoO3 performance, paving new pathways for its optimization and development in relevant fields.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"7 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nano14141189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Molybdenum trioxide (MoO3) is an attractive semiconductor. Thus, bandgap engineering toward photoelectronic applications is appealing yet not well studied. Here, we report the incorporation of sulfur atoms into MoO3, using sulfur powder as a source of sulfur, via a self-developed hydrothermal synthesis approach. The formation of Mo-S bonds in the MoO3 material with the synergistic effect of sulfur doping and oxygen vacancies (designated as S-MoO3−x) is confirmed using Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR). The bandgap is tuned from 2.68 eV to 2.57 eV upon sulfur doping, as confirmed by UV-VIS DRS spectra. Some MoS2 phase is identified with sulfur doping by referring to the photoluminescence (PL) spectra and electrochemical impedance spectroscopy (EIS), allowing significantly improved charge carrier separation and electron transfer efficiency. Therefore, the as-prepared S-MoO3−x delivers a sensitive photocurrent response and splendid cycling stability. This study on the synergistic effect of sulfur doping and oxygen vacancies provides key insights into the impact of doping strategies on MoO3 performance, paving new pathways for its optimization and development in relevant fields.
具有硫掺杂和氧空位协同效应的 MoO3:掺硫对结构、形态和光电特性的影响
三氧化钼(MoO3)是一种极具吸引力的半导体。因此,针对光电子应用的带隙工程很有吸引力,但却没有得到很好的研究。在此,我们报告了利用硫磺粉作为硫源,通过自主开发的水热合成方法在 MoO3 中加入硫原子的情况。傅立叶变换红外光谱(FTIR)、X 射线光电子能谱(XPS)和电子顺磁共振(EPR)证实,在硫掺杂和氧空位的协同作用下,MoO3 材料中形成了 Mo-S 键(命名为 S-MoO3-x)。UV-VIS DRS 光谱证实,掺硫后带隙从 2.68 eV 调整到 2.57 eV。通过参考光致发光(PL)光谱和电化学阻抗光谱(EIS),可以确定掺硫后出现了一些 MoS2 相,从而显著提高了电荷载流子分离和电子转移效率。因此,制备的 S-MoO3-x 具有灵敏的光电流响应和出色的循环稳定性。这项关于硫掺杂和氧空位协同效应的研究为了解掺杂策略对 MoO3 性能的影响提供了重要启示,为其在相关领域的优化和发展铺平了新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信