Carlos Benavides, Sebastián Gwinner, Andrés Ulloa, José Barrales-Ruiz, Vicente Sepúlveda, Manuel Díaz
{"title":"Bus Basis Model Applied to the Chilean Power System: A Detailed Look at Chilean Electric Demand","authors":"Carlos Benavides, Sebastián Gwinner, Andrés Ulloa, José Barrales-Ruiz, Vicente Sepúlveda, Manuel Díaz","doi":"10.3390/en17143448","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology to forecast electrical demand for the Chilean Electrical Power System considering a national, regional, district and bus spatial disaggregation. The methodology developed was based on different kinds of econometric models and end-use models to represent the massification of low carbon emission technologies such as electromobility, electric heating, electric water heating, and distributed generation. In addition, the methodology developed allows for the projection of the electric demand considering different kinds of clients as regulated and non-regulated clients, and different economic sectors. The model was applied to forecast the long-term electricity demand in Chile for the period 2022–2042 for 207 districts and 474 buses. The results include projections under the base case and low carbon scenarios, highlighting the significant influence of new technologies on future demand.","PeriodicalId":504870,"journal":{"name":"Energies","volume":"51 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/en17143448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a methodology to forecast electrical demand for the Chilean Electrical Power System considering a national, regional, district and bus spatial disaggregation. The methodology developed was based on different kinds of econometric models and end-use models to represent the massification of low carbon emission technologies such as electromobility, electric heating, electric water heating, and distributed generation. In addition, the methodology developed allows for the projection of the electric demand considering different kinds of clients as regulated and non-regulated clients, and different economic sectors. The model was applied to forecast the long-term electricity demand in Chile for the period 2022–2042 for 207 districts and 474 buses. The results include projections under the base case and low carbon scenarios, highlighting the significant influence of new technologies on future demand.