Hybrid approach for permeability prediction in porous media: combining FFT simulations with machine learning

IF 2.4 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Ly Hai-Bang, Nguyen Hoang-Long, Phan Viet-Hung, Vincent Monchiet
{"title":"Hybrid approach for permeability prediction in porous media: combining FFT simulations with machine learning","authors":"Ly Hai-Bang, Nguyen Hoang-Long, Phan Viet-Hung, Vincent Monchiet","doi":"10.15625/2615-9783/21133","DOIUrl":null,"url":null,"abstract":"The prediction of permeability in porous media is a critical aspect in various scientific and engineering applications. This paper presents a machine learning (ML) model based on the XGBoost algorithm for predicting the permeability of porous media using microstructure characteristics. The seahorse optimization algorithm was employed to fine-tune the hyperparameters of the XGBoost algorithm, resulting in a model with predictive solid capabilities. Regression analysis and residual errors indicated that the model achieved good prediction results on the training and testing datasets, with RMSE values of 0.0494 and 0.0826, respectively. A SHAP value sensitivity analysis revealed that the essential inputs were the size of the inclusions, with the quantiles representing the maximum size of the inclusions being the most significant variables affecting permeability. The findings of this study have important implications for the design and optimization of porous media, and the XGBoost algorithm-based ML model provides a fast and accurate tool for predicting the permeability of porous media based on microstructure characteristics.","PeriodicalId":23639,"journal":{"name":"VIETNAM JOURNAL OF EARTH SCIENCES","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VIETNAM JOURNAL OF EARTH SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/2615-9783/21133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The prediction of permeability in porous media is a critical aspect in various scientific and engineering applications. This paper presents a machine learning (ML) model based on the XGBoost algorithm for predicting the permeability of porous media using microstructure characteristics. The seahorse optimization algorithm was employed to fine-tune the hyperparameters of the XGBoost algorithm, resulting in a model with predictive solid capabilities. Regression analysis and residual errors indicated that the model achieved good prediction results on the training and testing datasets, with RMSE values of 0.0494 and 0.0826, respectively. A SHAP value sensitivity analysis revealed that the essential inputs were the size of the inclusions, with the quantiles representing the maximum size of the inclusions being the most significant variables affecting permeability. The findings of this study have important implications for the design and optimization of porous media, and the XGBoost algorithm-based ML model provides a fast and accurate tool for predicting the permeability of porous media based on microstructure characteristics.
多孔介质渗透性预测的混合方法:将 FFT 模拟与机器学习相结合
预测多孔介质的渗透性是各种科学和工程应用中的一个重要方面。本文提出了一种基于 XGBoost 算法的机器学习(ML)模型,用于利用微观结构特征预测多孔介质的渗透性。采用海马优化算法对 XGBoost 算法的超参数进行了微调,从而建立了一个具有坚实预测能力的模型。回归分析和残差误差表明,该模型在训练和测试数据集上取得了良好的预测结果,RMSE 值分别为 0.0494 和 0.0826。SHAP 值敏感性分析表明,基本输入是夹杂物的尺寸,而代表夹杂物最大尺寸的量值是影响渗透率的最重要变量。本研究的发现对多孔介质的设计和优化具有重要意义,基于 XGBoost 算法的 ML 模型为根据微观结构特征预测多孔介质的渗透性提供了快速准确的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
VIETNAM JOURNAL OF EARTH SCIENCES
VIETNAM JOURNAL OF EARTH SCIENCES GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
20.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信