{"title":"Convergence of lattice Boltzmann methods with overrelaxation\n\n for a nonlinear conservation law","authors":"Denise Aregba-Driollet","doi":"10.1051/m2an/2024058","DOIUrl":null,"url":null,"abstract":"We approximate a nonlinear multidimensional conservation law by Lattice Boltzmann Methods (LBM), based on underlying BGK type systems with finite number of velocities discretized by a transport-collision scheme. The collision part involves a relaxation parameter ω which value greatly influences the stability and accuracy of the method, as noted by many authors. In this article we clarify the relationship between ω and the parameters of the kinetic model and we highlight some new monotonicity properties which allow us to extend the previously obtained stability and convergence results. Numerical experiments are performed.","PeriodicalId":505020,"journal":{"name":"ESAIM: Mathematical Modelling and Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM: Mathematical Modelling and Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/m2an/2024058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We approximate a nonlinear multidimensional conservation law by Lattice Boltzmann Methods (LBM), based on underlying BGK type systems with finite number of velocities discretized by a transport-collision scheme. The collision part involves a relaxation parameter ω which value greatly influences the stability and accuracy of the method, as noted by many authors. In this article we clarify the relationship between ω and the parameters of the kinetic model and we highlight some new monotonicity properties which allow us to extend the previously obtained stability and convergence results. Numerical experiments are performed.