Convergence of lattice Boltzmann methods with overrelaxation   for a nonlinear conservation law

Denise Aregba-Driollet
{"title":"Convergence of lattice Boltzmann methods with overrelaxation\n\n  for a nonlinear conservation law","authors":"Denise Aregba-Driollet","doi":"10.1051/m2an/2024058","DOIUrl":null,"url":null,"abstract":"We approximate a nonlinear multidimensional conservation law by Lattice Boltzmann Methods (LBM), based on underlying BGK type systems with finite number of velocities discretized by a transport-collision scheme. The collision part involves a relaxation parameter ω which value greatly influences the stability and accuracy of the method, as noted by many authors. In this article we clarify the relationship between ω and the parameters of the kinetic model and we highlight some new monotonicity properties which allow us to extend the previously obtained stability and convergence results. Numerical experiments are performed.","PeriodicalId":505020,"journal":{"name":"ESAIM: Mathematical Modelling and Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM: Mathematical Modelling and Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/m2an/2024058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We approximate a nonlinear multidimensional conservation law by Lattice Boltzmann Methods (LBM), based on underlying BGK type systems with finite number of velocities discretized by a transport-collision scheme. The collision part involves a relaxation parameter ω which value greatly influences the stability and accuracy of the method, as noted by many authors. In this article we clarify the relationship between ω and the parameters of the kinetic model and we highlight some new monotonicity properties which allow us to extend the previously obtained stability and convergence results. Numerical experiments are performed.
非线性守恒定律的过松弛晶格玻尔兹曼方法的收敛性
我们通过晶格玻尔兹曼方法(LBM)来近似非线性多维守恒定律,该方法基于底层的 BGK 类型系统,通过传输-碰撞方案对有限数量的速度进行离散。碰撞部分涉及一个弛豫参数 ω,其值对方法的稳定性和准确性有很大影响,许多学者都注意到了这一点。在本文中,我们澄清了 ω 与动力学模型参数之间的关系,并强调了一些新的单调性特性,从而扩展了之前获得的稳定性和收敛性结果。本文还进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信