{"title":"Control of glycogen synthesis in health and disease.","authors":"W Stalmans, M Bollen, L Mvumbi","doi":"10.1002/dmr.5610030107","DOIUrl":null,"url":null,"abstract":"<p><p>Investigations in our laboratory have shown that the activity of glycogen synthase phosphatase in the liver is shared by at least two functionally distinct proteins: a G-component, which is tightly associated with glycogen particles, and a soluble S-component. Most preparations of glycogen synthase-b that are isolated from the liver of fed glucagon-treated animals require the presence of both components in order to be converted to synthase-a. The G-component is subject to control mechanisms that do not affect the S-component. Its activity is strongly inhibited by phosphorylase-a. This feature explains why glycogen synthesis and glycogenolysis do not normally occur simultaneously, except in the glycogen-depleted liver, where a futile cycle may occur. Experiments in vitro have shown that a minimal glycogen concentration is required to ensure the interaction between the G-component and phosphorylase-a. The G-component is also selectively inhibited by Ca2+, and the magnitude of this inhibition depends markedly on the glycogen concentration. The latter inhibition is probably one of the mechanisms by which cyclic adenosine monophosphate (cAMP)-independent glycogenolytic agents achieve the inactivation of glycogen synthase in the liver. Glucocorticoid hormones and insulin are required for the induction and/or maintenance of the G-component in the liver. During the development of the fetal rat, glucocorticoids induce the G-component in the liver. This is an essential event in the glucocorticoid-triggered deposition of glycogen in the fetal liver. A functional adrenal cortex is also required in the adult animal to prevent a loss of the capacity for hepatic glycogen storage during starvation. The latter capacity depends on the concentration of functional G-component in the liver. Chronic diabetes causes a similar functional loss. However, the effect of glucocorticoids is not mediated by a putative secretion of insulin.</p>","PeriodicalId":77109,"journal":{"name":"Diabetes/metabolism reviews","volume":"3 1","pages":"127-61"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/dmr.5610030107","citationCount":"109","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes/metabolism reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/dmr.5610030107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109
Abstract
Investigations in our laboratory have shown that the activity of glycogen synthase phosphatase in the liver is shared by at least two functionally distinct proteins: a G-component, which is tightly associated with glycogen particles, and a soluble S-component. Most preparations of glycogen synthase-b that are isolated from the liver of fed glucagon-treated animals require the presence of both components in order to be converted to synthase-a. The G-component is subject to control mechanisms that do not affect the S-component. Its activity is strongly inhibited by phosphorylase-a. This feature explains why glycogen synthesis and glycogenolysis do not normally occur simultaneously, except in the glycogen-depleted liver, where a futile cycle may occur. Experiments in vitro have shown that a minimal glycogen concentration is required to ensure the interaction between the G-component and phosphorylase-a. The G-component is also selectively inhibited by Ca2+, and the magnitude of this inhibition depends markedly on the glycogen concentration. The latter inhibition is probably one of the mechanisms by which cyclic adenosine monophosphate (cAMP)-independent glycogenolytic agents achieve the inactivation of glycogen synthase in the liver. Glucocorticoid hormones and insulin are required for the induction and/or maintenance of the G-component in the liver. During the development of the fetal rat, glucocorticoids induce the G-component in the liver. This is an essential event in the glucocorticoid-triggered deposition of glycogen in the fetal liver. A functional adrenal cortex is also required in the adult animal to prevent a loss of the capacity for hepatic glycogen storage during starvation. The latter capacity depends on the concentration of functional G-component in the liver. Chronic diabetes causes a similar functional loss. However, the effect of glucocorticoids is not mediated by a putative secretion of insulin.