A Monte Carlo resampling framework for implementing goodness-of-fit tests in spatial capture-recapture models

IF 6.3 2区 环境科学与生态学 Q1 ECOLOGY
Yan Ru Choo, Chris Sutherland, Alison Johnston
{"title":"A Monte Carlo resampling framework for implementing goodness-of-fit tests in spatial capture-recapture models","authors":"Yan Ru Choo,&nbsp;Chris Sutherland,&nbsp;Alison Johnston","doi":"10.1111/2041-210X.14386","DOIUrl":null,"url":null,"abstract":"<p>\n \n </p>","PeriodicalId":208,"journal":{"name":"Methods in Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/2041-210X.14386","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.14386","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image

在空间捕获-重捕模型中实施拟合优度检验的蒙特卡罗重采样框架
空间捕获-重捕(SCR)模型通过空间参照的相遇数据估算动物密度,已成为最广泛采用的密度估算方法。尽管空间捕获-再捕获方法的开发和应用发展迅速,但与生态学中其他类型的分层模型相比,评估模型拟合度的方法却很少受到关注。在此,我们开发了一种方法,利用蒙特卡罗模拟来测试频数主义 SCR 模型的拟合度(GoF)。我们从拟合模型中得出活动中心的概率分布。在此基础上,我们根据 SCR 参数估计值计算捕获历史中的预期遭遇,并通过蒙特卡罗模拟传播估计值和活动中心位置的不确定性。将这些测试统计数据汇总后就得到了计数数据,这样我们就可以用弗里曼-图基(Freeman-Tukey)测试法来检验拟合度。这些检验基于每个诱捕器中每个个体的总遭遇次数(FT-ind-trap)、每个个体的总遭遇次数(FT-individuals)和每个诱捕器的总遭遇次数(FT-traps)的汇总统计。我们评估了这些 GoF 检验在一系列违反假设的情况下诊断缺乏拟合的能力。FT-陷阱对探测概率中未模拟的空间和陷阱异质性反应最强(功率 = 0.53-0.56),而 FT-ind-traps 对可探测性中的随机个体差异(功率 = 0.88)和非空间离散差异(功率 = 0.35)反应最强。这些测试的目的是诊断检测参数拟合不良的情况,对密度中未模拟的异质性不敏感(功率 = <0.001)。我们证明,当检测子模型中存在未建模的异质性时,这些 GoF 检验能够检测出拟合不足。我们证明,当检测子模型中存在未模拟的异质性时,这些 GoF 检验能够检测出缺乏拟合度。当联合使用时,检验结果的组合在某些情况下还能推断出缺乏拟合度的类型。我们的蒙特卡罗抽样方法可以扩展到更广泛的 GoF 检验,从而为开发更多用于 SCR 的 GoF 方法提供了一个平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.60
自引率
3.00%
发文量
236
审稿时长
4-8 weeks
期刊介绍: A British Ecological Society journal, Methods in Ecology and Evolution (MEE) promotes the development of new methods in ecology and evolution, and facilitates their dissemination and uptake by the research community. MEE brings together papers from previously disparate sub-disciplines to provide a single forum for tracking methodological developments in all areas. MEE publishes methodological papers in any area of ecology and evolution, including: -Phylogenetic analysis -Statistical methods -Conservation & management -Theoretical methods -Practical methods, including lab and field -This list is not exhaustive, and we welcome enquiries about possible submissions. Methods are defined in the widest terms and may be analytical, practical or conceptual. A primary aim of the journal is to maximise the uptake of techniques by the community. We recognise that a major stumbling block in the uptake and application of new methods is the accessibility of methods. For example, users may need computer code, example applications or demonstrations of methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信