Traveling wave solutions of a susceptible-infectious model

Khalaf Alanazi
{"title":"Traveling wave solutions of a susceptible-infectious model","authors":"Khalaf Alanazi","doi":"10.56947/amcs.v24.354","DOIUrl":null,"url":null,"abstract":"This paper studies the traveling wave solutions of a susceptible and infectious (SI) mathematical model with and without recruitment rates. Our research provides numerical solutions for the proposed models, confirming the existence of traveling wave solutions. We meticulously calculate the minimal traveling wave speeds and analytically determine the spreading speed without turnover for the susceptible population. The paper also investigates the relationship between the spreading speeds and the model parameters. Additionally, we identify the threshold density of susceptible individuals, a crucial point below which the disease cannot persist. Our findings also confirm that the disease ceases to exist if the death rates surpass the rate of new cases of infections.","PeriodicalId":504658,"journal":{"name":"Annals of Mathematics and Computer Science","volume":"43 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56947/amcs.v24.354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the traveling wave solutions of a susceptible and infectious (SI) mathematical model with and without recruitment rates. Our research provides numerical solutions for the proposed models, confirming the existence of traveling wave solutions. We meticulously calculate the minimal traveling wave speeds and analytically determine the spreading speed without turnover for the susceptible population. The paper also investigates the relationship between the spreading speeds and the model parameters. Additionally, we identify the threshold density of susceptible individuals, a crucial point below which the disease cannot persist. Our findings also confirm that the disease ceases to exist if the death rates surpass the rate of new cases of infections.
易感-感染模型的行波解法
本文研究了有招募率和无招募率的易感和传染性(SI)数学模型的行波解。我们的研究为提出的模型提供了数值解,证实了行波解的存在。我们仔细计算了最小行波速度,并通过分析确定了易感人群无更替的传播速度。本文还研究了传播速度与模型参数之间的关系。此外,我们还确定了易感个体的临界密度,这是疾病无法持续的关键点。我们的研究结果还证实,如果死亡率超过新感染病例率,疾病就不复存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信