{"title":"Study on Rapid Simulation of the Pre-Cooling Process of a Large LNG Storage Tank with the Consideration of Digital Twin Requirements","authors":"Yunfei Zhao, Caifu Qian, Guangzhi Shi, Mu Li, Zaoyang Qiu, Baohe Zhang, Zhiwei Wu","doi":"10.3390/en17143471","DOIUrl":null,"url":null,"abstract":"The pre-cooling of a large LNG storage tank involves complex phenomena such as heat transfer, low-temperature flow, gas displacement, and vaporization. The whole pre-cooling process could take up to 50 h. For large-scale, full-capacity storage tanks, it is particularly important to accurately control the pre-cooling temperature. Digital twin technology can characterize and predict the full life cycle parameters from the beginning of pre-cooling development to the end and even the appearance of damage in real time. The construction of a digital twin platform requires a large number of data samples in order to predict the operating state of the device. Therefore, a simulation method with high computational efficiency for the pre-cooling process of LNG tanks is of great importance. In this paper, the mixture model and discrete phase model (DPM) are applied to simulate the pre-cooling process of a large LNG full-capacity tank. Following Euler–Lagrange, the DPM greatly simplifies the solution process. Compared with the experimental results, the maximum error of the DPM simulation results is less than 11%. Such a highly efficient simulation method for the large LNG full-capacity storage tank can make it possible to build the digital twin platform that needs hundreds of data model samples.","PeriodicalId":504870,"journal":{"name":"Energies","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/en17143471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The pre-cooling of a large LNG storage tank involves complex phenomena such as heat transfer, low-temperature flow, gas displacement, and vaporization. The whole pre-cooling process could take up to 50 h. For large-scale, full-capacity storage tanks, it is particularly important to accurately control the pre-cooling temperature. Digital twin technology can characterize and predict the full life cycle parameters from the beginning of pre-cooling development to the end and even the appearance of damage in real time. The construction of a digital twin platform requires a large number of data samples in order to predict the operating state of the device. Therefore, a simulation method with high computational efficiency for the pre-cooling process of LNG tanks is of great importance. In this paper, the mixture model and discrete phase model (DPM) are applied to simulate the pre-cooling process of a large LNG full-capacity tank. Following Euler–Lagrange, the DPM greatly simplifies the solution process. Compared with the experimental results, the maximum error of the DPM simulation results is less than 11%. Such a highly efficient simulation method for the large LNG full-capacity storage tank can make it possible to build the digital twin platform that needs hundreds of data model samples.