Deterministic Multistage Constellation Reconfiguration Using Integer Programming and Sequential Decision-Making Methods

Hang Woon Lee, David O. Williams Rogers, Brycen D. Pearl, Hao Chen, Koki Ho
{"title":"Deterministic Multistage Constellation Reconfiguration Using Integer Programming and Sequential Decision-Making Methods","authors":"Hang Woon Lee, David O. Williams Rogers, Brycen D. Pearl, Hao Chen, Koki Ho","doi":"10.2514/1.a35990","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of reconfiguring Earth observation satellite constellation systems through multiple stages. The Multistage Constellation Reconfiguration Problem (MCRP) aims to maximize the total observation rewards obtained by covering a set of targets of interest through the active manipulation of the orbits and relative phasing of constituent satellites. This paper considers deterministic problem settings in which the targets of interest are known a priori. We propose a novel integer linear programming formulation for MCRP, capable of obtaining provably optimal solutions. To overcome computational intractability due to the combinatorial explosion in solving large-scale instances, we introduce two computationally efficient sequential decision-making methods based on the principles of a myopic policy and a rolling horizon procedure. The computational experiments demonstrate that the devised sequential decision-making approaches yield high-quality solutions with improved computational efficiency over the baseline MCRP. Finally, a case study using Hurricane Harvey data showcases the advantages of multistage constellation reconfiguration over single-stage and no-reconfiguration scenarios.","PeriodicalId":508266,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.a35990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of reconfiguring Earth observation satellite constellation systems through multiple stages. The Multistage Constellation Reconfiguration Problem (MCRP) aims to maximize the total observation rewards obtained by covering a set of targets of interest through the active manipulation of the orbits and relative phasing of constituent satellites. This paper considers deterministic problem settings in which the targets of interest are known a priori. We propose a novel integer linear programming formulation for MCRP, capable of obtaining provably optimal solutions. To overcome computational intractability due to the combinatorial explosion in solving large-scale instances, we introduce two computationally efficient sequential decision-making methods based on the principles of a myopic policy and a rolling horizon procedure. The computational experiments demonstrate that the devised sequential decision-making approaches yield high-quality solutions with improved computational efficiency over the baseline MCRP. Finally, a case study using Hurricane Harvey data showcases the advantages of multistage constellation reconfiguration over single-stage and no-reconfiguration scenarios.
使用整数编程和顺序决策方法进行确定性多级星座重构
本文探讨了通过多阶段重新配置地球观测卫星星座系统的问题。多级星座重新配置问题(MCRP)旨在通过积极操纵组成卫星的轨道和相对相位,使覆盖一组感兴趣目标所获得的总观测回报最大化。本文考虑的是确定性问题设置,其中感兴趣的目标是先验已知的。我们为 MCRP 提出了一种新颖的整数线性编程公式,能够获得可证明的最优解。为了克服大规模实例求解过程中因组合爆炸导致的计算难点,我们引入了两种基于近视策略和滚动视界程序原理的高效计算顺序决策方法。计算实验证明,与基线 MCRP 相比,所设计的顺序决策方法能产生高质量的解决方案,并提高了计算效率。最后,利用 "哈维 "飓风数据进行的案例研究展示了多阶段星座重新配置相对于单阶段和无重新配置方案的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信