Yanwen Wang, Yuchuan Zhu, Long Chen, J. Ling, Mingming Zhang
{"title":"Development and testing of a discrete coil magnetostrictive actuator","authors":"Yanwen Wang, Yuchuan Zhu, Long Chen, J. Ling, Mingming Zhang","doi":"10.1088/1361-665x/ad6382","DOIUrl":null,"url":null,"abstract":"\n Active combustion control (ACC) technology is an effective measure for suppressing the combustion oscillation of aero-engines. The magnetostrictive actuator is the most suitable choice for the ACC actuator due to its excellent high-frequency characteristics and high-temperature resistance. For the magnetostrictive actuator to produce high-frequency displacement, the constant current driver must have sufficient power, which increased its mass. A solution is to use multi-channel and low-power constant current driver. Therefore, the coil of the magnetostrictive actuator is axially dispersed and driven by two four-channel servo amplifiers. The driver's mass is significantly reduced while maintaining the same electromagnetic conversion effect. In addition, an analytical model of a discrete coil magnetostrictive actuator is established, and a series of experiments are conducted. The maximum hysteresis error of output displacement at 200 Hz is reduced by 15.2%. Furthermore, under PID closed-loop control, the root mean square (RMS) error is less than 2% when tracking a 10 Hz sinusoidal displacement with coil switching drive.","PeriodicalId":506236,"journal":{"name":"Smart Materials and Structures","volume":"32 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad6382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Active combustion control (ACC) technology is an effective measure for suppressing the combustion oscillation of aero-engines. The magnetostrictive actuator is the most suitable choice for the ACC actuator due to its excellent high-frequency characteristics and high-temperature resistance. For the magnetostrictive actuator to produce high-frequency displacement, the constant current driver must have sufficient power, which increased its mass. A solution is to use multi-channel and low-power constant current driver. Therefore, the coil of the magnetostrictive actuator is axially dispersed and driven by two four-channel servo amplifiers. The driver's mass is significantly reduced while maintaining the same electromagnetic conversion effect. In addition, an analytical model of a discrete coil magnetostrictive actuator is established, and a series of experiments are conducted. The maximum hysteresis error of output displacement at 200 Hz is reduced by 15.2%. Furthermore, under PID closed-loop control, the root mean square (RMS) error is less than 2% when tracking a 10 Hz sinusoidal displacement with coil switching drive.