Secure metric dimension of new classes of graphs

Q4 Engineering
I. Batiha, Basma Mohamed, I. Jebril
{"title":"Secure metric dimension of new classes of graphs","authors":"I. Batiha, Basma Mohamed, I. Jebril","doi":"10.21595/mme.2024.24168","DOIUrl":null,"url":null,"abstract":"The metric representation of a vertex v of a graph G is a finite vector representing distances of v with respect to vertices of some ordered subset S⊆V (G). If no suitable subset of S provides separate representations for each vertex of V(G), then the set S is referred to as a minimal resolving set. The metric dimension of G is the cardinality of the smallest (with respect to its cardinality) minimal resolving set. A resolving set S is secure if for any v∈V–S, there exists x∈S such that (S–{x})∪{v} is a resolving set. For various classes of graphs, the value of the secure resolving number is determined and defined. The secure metric dimension of the graph classes is being studied in this work. The results show that different graph families have different metric dimensions.","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/mme.2024.24168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The metric representation of a vertex v of a graph G is a finite vector representing distances of v with respect to vertices of some ordered subset S⊆V (G). If no suitable subset of S provides separate representations for each vertex of V(G), then the set S is referred to as a minimal resolving set. The metric dimension of G is the cardinality of the smallest (with respect to its cardinality) minimal resolving set. A resolving set S is secure if for any v∈V–S, there exists x∈S such that (S–{x})∪{v} is a resolving set. For various classes of graphs, the value of the secure resolving number is determined and defined. The secure metric dimension of the graph classes is being studied in this work. The results show that different graph families have different metric dimensions.
新类图形的安全度量维度
图 G 的顶点 v 的度量表示是一个有限向量,表示 v 相对于某个有序子集 S⊆V (G) 的顶点的距离。如果 S 没有合适的子集为 V(G) 的每个顶点提供单独的表示,那么集合 S 就被称为最小解析集合。G 的度量维度是最小(相对于其卡方数)最小解析集的卡方数。如果对于任意 v∈V-S,存在 x∈S,使得 (S-{x})∪{v} 是一个解析集,则解析集 S 是安全的。对于不同类别的图,安全解析数的值是确定和定义的。这项工作正在研究图类的安全度量维度。结果表明,不同的图族有不同的度量维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
8
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信