Chuanshan Wu, Dongxing Gao, Haonan Shangguan, R. Chen, Changlin Hou
{"title":"Phase-Change/Salt-Based Slow-Release Composite Material for Anti-Icing and Snow-Melting","authors":"Chuanshan Wu, Dongxing Gao, Haonan Shangguan, R. Chen, Changlin Hou","doi":"10.3390/buildings14072177","DOIUrl":null,"url":null,"abstract":"Currently, self-desiccating asphalt mixtures on roads mainly incorporate phase-change materials or salt-based slow-release agents individually for de-icing. However, pure phase-change material mixtures have limited anti-freezing efficiency and short heat-release duration, making them impractical for large-scale snow melting; meanwhile, salt-based slow-release agents suffer from rapid deterioration in de-icing performance. To address these issues encountered, herein, we introduce the phase-change/salt-based slow-release composite materials via the integration of these two materials and investigate their pavement and de-icing performance with the asphalt mixture. For the pavement performance, the optimal asphalt–aggregate ratio for the anti-icing asphalt mixture was found to be 5.1% For anti-bonding and de-icing performance, the electrical conductivity tests, bonding pull-off tests, and interfacial contact melting experiments were conducted. The results indicate that the latent heat of the TH-ME5 (phase-change material) can delay the decrease in environmental temperature and inhibit salt release from T-SEN (salt-based slow-release material), thereby extending the lifespan of the anti-icing asphalt mixture. These results demonstrate that the synergistic effect between the two components of the composite material not only enhance the snow-melting and de-icing performance of the asphalt pavement but also prolong the snow-melting time of the pavement in a low-temperature environment.","PeriodicalId":505657,"journal":{"name":"Buildings","volume":"79 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/buildings14072177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, self-desiccating asphalt mixtures on roads mainly incorporate phase-change materials or salt-based slow-release agents individually for de-icing. However, pure phase-change material mixtures have limited anti-freezing efficiency and short heat-release duration, making them impractical for large-scale snow melting; meanwhile, salt-based slow-release agents suffer from rapid deterioration in de-icing performance. To address these issues encountered, herein, we introduce the phase-change/salt-based slow-release composite materials via the integration of these two materials and investigate their pavement and de-icing performance with the asphalt mixture. For the pavement performance, the optimal asphalt–aggregate ratio for the anti-icing asphalt mixture was found to be 5.1% For anti-bonding and de-icing performance, the electrical conductivity tests, bonding pull-off tests, and interfacial contact melting experiments were conducted. The results indicate that the latent heat of the TH-ME5 (phase-change material) can delay the decrease in environmental temperature and inhibit salt release from T-SEN (salt-based slow-release material), thereby extending the lifespan of the anti-icing asphalt mixture. These results demonstrate that the synergistic effect between the two components of the composite material not only enhance the snow-melting and de-icing performance of the asphalt pavement but also prolong the snow-melting time of the pavement in a low-temperature environment.