sendigR: an R package to leverage the value of CDISC SEND datasets for cross-study analysis

K. Snyder, C. M. S. Ahmed, Md Yousuf Ali, S. Butler, Michael DeNieu, W. Houser, B. Paisley, M. Rosentreter, W. Wang, B. Larsen
{"title":"sendigR: an R package to leverage the value of CDISC SEND datasets for cross-study analysis","authors":"K. Snyder, C. M. S. Ahmed, Md Yousuf Ali, S. Butler, Michael DeNieu, W. Houser, B. Paisley, M. Rosentreter, W. Wang, B. Larsen","doi":"10.3389/ftox.2024.1392686","DOIUrl":null,"url":null,"abstract":"The CDISC Standard for Exchange of Nonclinical Data (SEND) data standard has created new opportunities for collaborative development of open-source software solutions to facilitate cross-study analyses of toxicology study data. A public–private partnership between BioCelerate and the FDA/Center for Drug Evaluation and Research (CDER) was established in part to develop and publicize novel methods to facilitate cross-study analysis of SEND datasets. As part of this work in collaboration with the Pharmaceutical Users Software Exchange (PHUSE), an R package sendigR has been developed to enable users to construct a relational database from a collection of SEND datasets and then query that database to perform cross-study analyses. The sendigR package also includes an integrated Python package, xptcleaner, which can be used to harmonize the terminology used in SEND datasets by mapping to CDISC controlled terminologies. The sendigR R package is freely available on the comprehensive R Archive Network (CRAN) and at https://github.com/phuse-org/sendigR. An R Shiny web application was included in the R package to enable toxicologists with no coding experience to perform historical control analyses. Experienced R programmers will be able to integrate the package functions into their own custom scripts/packages and potentially contribute improvements to the functionality of sendigR.sendigR reference manual: https://phuse-org.github.io/sendigR/.sendigR R Shiny demo app: https://phuse-org.shinyapps.io/sendigR/.","PeriodicalId":502303,"journal":{"name":"Frontiers in Toxicology","volume":"109 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ftox.2024.1392686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The CDISC Standard for Exchange of Nonclinical Data (SEND) data standard has created new opportunities for collaborative development of open-source software solutions to facilitate cross-study analyses of toxicology study data. A public–private partnership between BioCelerate and the FDA/Center for Drug Evaluation and Research (CDER) was established in part to develop and publicize novel methods to facilitate cross-study analysis of SEND datasets. As part of this work in collaboration with the Pharmaceutical Users Software Exchange (PHUSE), an R package sendigR has been developed to enable users to construct a relational database from a collection of SEND datasets and then query that database to perform cross-study analyses. The sendigR package also includes an integrated Python package, xptcleaner, which can be used to harmonize the terminology used in SEND datasets by mapping to CDISC controlled terminologies. The sendigR R package is freely available on the comprehensive R Archive Network (CRAN) and at https://github.com/phuse-org/sendigR. An R Shiny web application was included in the R package to enable toxicologists with no coding experience to perform historical control analyses. Experienced R programmers will be able to integrate the package functions into their own custom scripts/packages and potentially contribute improvements to the functionality of sendigR.sendigR reference manual: https://phuse-org.github.io/sendigR/.sendigR R Shiny demo app: https://phuse-org.shinyapps.io/sendigR/.
sendigR:利用 CDISC SEND 数据集的价值进行交叉研究分析的 R 软件包
CDISC 非临床数据交换标准 (SEND) 数据标准为合作开发开源软件解决方案以促进毒理学研究数据的跨研究分析创造了新的机遇。BioCelerate 和 FDA/药物评价与研究中心 (CDER) 建立了公私合作伙伴关系,其部分目的是开发和推广新方法,以促进 SEND 数据集的跨研究分析。作为与制药用户软件交流中心(PHUSE)合作开展的这项工作的一部分,我们开发了一个 R 软件包 sendigR,使用户能够从 SEND 数据集集合中构建一个关系数据库,然后查询该数据库以执行交叉研究分析。sendigR 软件包还包括一个集成的 Python 软件包 xptcleaner,可用于通过映射到 CDISC 受控术语来统一 SEND 数据集中使用的术语。sendigR R 软件包可在综合 R Archive Network (CRAN) 和 https://github.com/phuse-org/sendigR 免费获取。R 软件包中包含一个 R Shiny 网络应用程序,使没有编码经验的毒理学家也能进行历史对照分析。有经验的 R 程序员可以将软件包功能整合到自己的自定义脚本/软件包中,并有可能对 sendigR 的功能进行改进。sendigR 参考手册:https://phuse-org.github.io/sendigR/.sendigR R Shiny 演示应用程序:https://phuse-org.shinyapps.io/sendigR/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信